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ARSTRACT

SOUND PROPAGATION IN A LIQUID

OVERLYING A VISCOLLASTIC HALFSPACE

by

ALLEN H. MACNUSON

e problem of acoustic subbottom sediment identification and
classification is treated using an analytical appreach. The purpose of
the study is to develop expressions for the acoustic response in a
liquid overlying a layered viscoelastic halfspace. After a review of
related experimental results and earlier analytical studies, the fundamental
governing laws are discussed and a linearization is applied. Linearized
constitutive relations are developed for an elastic solid with super-
imposed damping (Voigt viscoelastic model}. Vector displacement field
cquations are alse derived for the inviscid fluid,

The vector ficld equations are simplified by separating the field
into longitudinal and transvcrse parts and introducing scalar potentiol
functions for the resulting polarizations, The rcsponse in the liquid is
expressed as a Green's function due to the monopole point-source ficld
excitation. Then the multi-layer problem is solved using the Green’s
function formalism, integral transforms and by matching boundary
conditions at each interface between layers. A recurrence rclation is
developed for the potentials in adjoining visceelastic layers. This

recurrence relation is applied successively to climinate the potentials

ix



between the first and last viscoelastic layers. The result is suitable for
computer studies due to the application of the recurreance relation.
Special cases of the multi-layer problem are developed and shown
to be consistent with earlier results. The one viscoelastic layer
(halfspace) case is analyzed in detail for both finite and infinite depth
of the overlying liquid. The integral form is evaluated using complex
variable techniques and high-frequency far-field approximations. The
results are expressed as the sum of residue terms and branch line
integrals. The branch line integrals are expressed as asymptotic series
and the leading terms are evaluated for the infinite liquid depth. 'The
result is shown to be applicable to the near-bottom case. In addition,
a steepest descent integration is applied for moderate angles of
incidence. The resulting response is the sum of the direct and reflected
wave and a refracted wave that occurs for anples of incidence beyond a
critical angle,

Application of the results to the subbottom identification problem is
discussed. It is shown that the compressional and transverse wave
propagation in the subbottom can be inferred from the results for the
near-bottom infinite depth case. Additional information on the

subbottom may he obtained from the moderate (oblique) incidence model,
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I. INTRODUCTION

The extraction of mineral sediments from the continental shelf is
becoming more feasible economically due to the steady depletion of
resources on land. Interest in this area has created a demand for an
inexpensive, rapid means for classifying underwater sediments. The
purpose of the present work has been to develop understanding of the
fundamental physical processes occurring in the ocean-subbottom system,
he dynamical behavior of the system shown schematically in Figure 1
1n response to acoustical input signals is of primary interest, The
rationale of the present investigations is based on the premise that
further advances in the remote classifications of marine sediments are
dependent upon the development of more sophisticated and realistic
analytical models. A model consisting of a coupled acoustic (ocean)
and dynamic viscoelastic field (subbottom) is developed. Classification
of sediments can then be accomplished in terms of the viscoelastic
parameters of the subbottom. Enough progress has been made using this
type of approach to justify further development.

A, Discussion of Results of Previous Investigators

Considerable experimental work has been done to classify or identify
marine sediments. The most conclusive work to date is that of Breslau
and Hamilton. Breslau [1} developed a retationship between subbottom
reflectivity and the sediment porosity. Uamilton's results of extensive
work done on the continental terrace and in the deep occan are summarized
in Reference [il]. le measured or computed the elastic properties of

several types of marine sediments. His results for the continental
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terrace (shelf and slope) are presented in Table 1. Several general
observations can be made from llamilton's results. First, onc sees that
the compressional wave spced with the subbottom is slightly higher than
the speed of sound in the overlying water. Sccondly, the shear wave
speed in the sediment 1is considerably slower than the water's spced of
sound. In addition, the sediment density varies from about 1.5 to 2.0
times the water density.

Numerous investigations have been performed to model and measurc
the dissipative or damping properties of marine sediments. Krizek and
Franklin [21] measured the energy dissipation in a soft clay. They found
the energy dissipation to be independent of frequency from 0.1 to 30 Hz.
Mizikos [30], [31] found that, for marine sands, the sliding contact
between grains induced an amplitude and frequency independent phase lag
between stress and strain. Other investigations have been conducted:
for example, we cite the work of liampton [12] and Wood and Weston [57].
Both obtained empirical rclations for the attenuation or energy
dissipation of sound in marine sediments. In any casec, the damping
mechanisms in marine sediments are not well understood and no universally
accepted model for the damping exists valid over the frcquency range of
interest. The experiments generally conclude that marine sediments may
be modeled as an clastic solid with small supcrimposed damping.

The experimental work on marine sediments has relied on relatively
simple models to interpret the data., Breslau [1] used a plane-wave
reflection coefficient model in conjuction with ray theory. In
Hamilton's work [11] the compressional wave speed in the sediment was

measured directly using probes. The shear wave velocities were computcd
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from Stoneley wave speed measurements using the close relation between
the two waves [2].

The models used do not take inte account several important cffects:
the first is the existence of sublayers in the sediment (shown in
Figure 1) and the sccond is damping. Other effects such as nonuniformity
of the sediment interfaces and sediment inhomogenicties are obviously not
taken into account, The present work develops a more general acoustical-
elastodynamic model with damping that takes into account the multiple
layering. In addition, the threc-dimensional nature of the problem is
explicitly taken into account by modeling the acoustic stimulps as a
peint source in the liquid layer.

The analytical work developed here is an extension of seismological
and gcophysical investigations on the analysis of earth tremors in the
deep ocean and response to underwater cxplosions. [lwing, Jardetsky and
Press [5] present in a comprehensive survey the principal results of
analytical studies in thisarea up to about 1957. The principal
differences between seismological-geophysical modeling and acoustical
subbottom identification arise due to differences in thec time dependence
of the stimuli to the system and in the ranges over which signals are
monitored. Geophysical work usually uses an impulsive time dependence
representing an explosion or a natural disturbance. In addition,
Jdistances from source to receiver are usually many times the water depth
in the decp ocean. On the other hand, acoustic sounding of the subbottom
in shallow water is usually done with a frequency-modulated pulse of
short duration. The modulating frequencies are generally in the mid-audio
range: i.e. from 1 Kz to 10 Kliz. The ranges are usually much shorter,

as both source and receiver are usually hung over the side of a single
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survey vessel. In addition, elastic wave propagation speeds in the deep
ocean bottom differ qualitatively from those in secdiments in shallow
water (see Table 2). We see from the table that both the compressional
and the shear wave in the rock bottom arc higher than the liguid layer's
sound velocity,

The relative differences in the physical parameters altcr the
viewpoints of the two activities. Genecrally in geophysical work modal
behavior is predominant duc to the large distances between stimulus and
rcceiver., In acoustic sounding, reflected waves (generally the first
return), refracted waves and interface waves are the significant cffects
picked up by sensors. The frequency content of scismological stimuli
arce usually at the low cnd of the spectrum, while the spectrum of a
modulated acoustic signal is centered around the modulation frequency.
High-frequency approximations may then be made in acoustical work. This
facilitates evaluation of integral expressions for the response using
asymptotic methods,

The earliest analvtical work in the peophysical area dates back to
Ravieipgh [41] and Lamb [22]. The carly work was extended and generalized
by, among others, Nakano [36] and Lapwood [27]. Jeffries [17] first
applied to the geophysical field the complex variable techniques developed
by Sommerfeld [43] for electromagnetic wave propagation problems, Most
of the later analytical work (including this) has been based on Sommerfeld's
approach.

Pekeris [38] and Press and Ewing [40] investigated the response due
to a point source in a liquid layer overlying a fluid and solid half-

space respectively. DBoth neglected the effect of branch-line integrals,



Table 2

Elastodynamic Wave Propagation Parameters for the
Ocean Floor (Rock) (From Ewing, et.al. {5], p. 162)

Type of

Bottom ol/po cL/cT CT/CO CL/CO
Granite 2.5 \}3 2 2V3
Basaltic 3.0 V 3 3 IV3



being primarily interested in the modal or waveguide-like part of the
response. londa and Nakamura [15] evaluated the branch line integrals
for the problem treated by Press and Ewing. These integrals correspond
to reflected and refracted waves.

The transmission of elastic waves through multi-layered media has
been discussed for the plane-wave casc by Thomson [53] and Haskell [13],
Thomson developed a matrix method that could be applied to an arbitrary
number of layers using a recurrence relation. Haskell later removed an
unnecessary restriction appearing in Thomson's formalism and computed
group velocities for several assumed models of the earth's crust.
Jardetzky [16] developed expressions for the period equation and the
responsc duc to a point source in am n-laycred elastic halfspace.
(Jardetzky's treatment also appears in Reference [6]).

B. Statemcnt of the Problem

The purpose of this investigation is to develop expressions for
the point-source acoustic response in a liquid layer overlying a layered
solid halfspace. The results are to be developed systematically from
fundamental principles. To keep the discussion as general as possible,
expressions are developed in a frequency domain., The Fourier synthesis
for specific input pulse shapes in the time domain is relatively
straightforward and does not introduce any new fundamental insight into
the problen.

The solid halfspace is assumed to consist of an arbitrary number
of parallel horizontal layers. [ach layer is assumed to be a linear
homogeneous isotropic clastic solid with superimposed damping:; e.g., a

Voigt viscoelastic model, The frequency-domain response is to be
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calculated for values of physical parameters corresponding to typical
marine scdiments (see Table 1). The rcsponse will be interpreted

physically and compared with the results of earlier investigators.

€. Method of Approach

The overall approach to the problem is analytical. Approxima-
tions and simplifications bascd on physical arguments are made to facilitate
discussion in cases where analytical complexity precludes a general
trcatment. An effort has been made to develop results in the most
general forwm, after which simplifications and special cases are discussed.

In Chapter II we derive the dynamic equations for visceelastic
solid. The equations arc developed from fundamental conservation laws
and thermodynamical considerations. Suitable constitutive relatioens arc
developed. Linecarization is applied based on small disturbances from a
uniform equilibrium state.

Chapter III is devoted to the simplification of the vector field
equations derived in the preceding chapter. The vector field equations
are broken down into longitudinal and transverse parts and the Fourier
transform in time is applied. Solutions to the vector ficld cquations
are devcloped using scalar potential functions, Finally the stress and
displacement fields arc expressed in terms of the scalar functions.

The fiecld excitation in the liquid layver is devcloped using a point
source model.

In Chapter IV the boundary valuc problem for the general n-layered
solid halfspace with an overlying liquid layer is solved using a matrix
formalism combined with a recurrence relation. Integral transform methods

are applied, enabling thc boundary conditions to be evaluated as algebraic
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expressions in the transform domain. The response is expressed as a
Green's function in integral form.

Spccial cases of the Green's function are evaluated in Chapters v
and V1. The homogeneous solid halfspace with overlying liquid layer is
trcated in Chapter V. Chapter VI is concerned with the liquid halfspace
over a homogeneous solid halfspace. In both chapters approximate
expressions for the frequency domain Green's functions are obtained using
asymptotic tcchniques,

Finally, in Chapter VII the results are summarized and compared with
previous results. New results are discussed and interpreted physically

where possible.



[1, THE DYNAMIC FIZLD EQUAFIONS

The dynamic field equations are derived for waves propagating in
elastic and damped elastic media. The usual conservation laws are
written and linearized. Suitable constitutive relations are developed
for small disturbances from an equilibrium state. Finally, the dynamic
field equations are developed by combining the linearized conservation
laws with the constitutive relations.

Much of the discussion and development in this chapter uses the
Cartesian tensor notation for convenience. Later, a curvilinear coor-
dinate system is introduced due to symmetries existing in the field.
The Cartesian tensor notation is used in the development of the field
equations due to the relative ease of computation using this represen-
tation. Final results are later converted to an invariant notation for

use in the orthogonal curvilinear coordinate system.

A. Deformation Analysis

. . . - > >
We introduce a displacement vector for a continuum as u = u{x).

That is, the displacement vector is a field quantity defined throughout
>
the Luclidean 3-space x. We define the displacement as the distance a

material point in space moves from some original undeformed configuration
+ > >+ > -
u(x,t) = rix(x},tl- X(x), (z.1)

.

where X maps the particle into the Euclidean 3-space in the undeformed
>

configuration, and r' is the position of the same particle after the

field has undergone a deformation. We expand T spatially as follows:
3r.

X)) = X 4
ri(x) = X4 5;}- xj + .. . {(2.2)
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where the differentiation is performed for a fixed particle and

.

A
(2.3)

For small displacements one may also write a chain rule as follows:
aui
= 2
u, (§§30dxj Yoo {u.4)
where the quantity (Bui/axj} is the deformation gradient, a second-order

tensor. We may write the deformation gradient as follows from eqgs. (2.4)

and (2.3)
Ju. 3r.
L1
ax. 9x.

j il -

One may introduce the infinitesimal strain tensor bij by taking the

symmetric part of the deformation gradient

Z (?m.1 ¥ ij) (2.3)

e =
1
In addition, the velocity v may be introduced by taking the material

time derivative of the displacement
(2.0)

- d -»
V*—ajt-u—

Here the material or total time derivative is interpreted in Cartesian

notation as

d¢y _ 3} , . _o{} 3( )
T T30 T VVO) =g *"i“f.:. (2.7)
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We denote the rate of strain tensor Eij as the symmetric part of the

velocity gradient

V!
€ij * 7(51“3.‘* axi)’ (2.8)

We note that for infinitesimal strains, the rate of strain tensor
is identical to the time derivative of the strain tensor.

Later in the chapter, we take the elements of the strain tensor to
be infinitesimal as the basis for the linearization of the governing
equations. This implies for wave type propagation that the deformations
are small. That is, in wave propagation, the disturbance 1is limited to
a small region in space (the length of the wave pulse) Uniform distur-
bances like thermal expansion, which imply large large deformations, are
ruled out. The displacement u may be taken as small relative to a char-
acteristic length scale in the field, such as the length of the propaga-
ting pulse. The elements of the rate of strain tensor are also taken as
small, which implies that the field velocity is small relative to some

velocity scale such as a speed of sound propagation in the medium.

B. Conservation Laws

The medium or continuum of interest is governed by four conservation
laws. We restrict the medium to be one in which only mechanical and thermo-
dynamic effects are significant. 1In addition, we rule out the possibility
of the medium's sustaining either a body couple or a couple-stress. In this
case, the governing laws are the conservation of mass, linear momentumn,

angular momentum and energy. The conservation of mass may be written as

ap -
3¢ 8, (pv;) = 0, (2.9)
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or in vector notation

9p clovy = Ty
5T Ve(pv) = 0, (2.9a)

where p is the mass density. The conservation of linear momentium implies

that

d
oTT Vj - Bigij = pfj . {2.10)

where Oij is the stress tensor and Fj is the body force per unit mass.
Equation (2.10) is also referred to as the equation of motion.
The conservation of angular womentum simply rcquires that the stress
tensor he symmetric, or
015 = 955 S (2.11)
in the absence of body couples and couple stresses. This implies that
only six independent elements of the stress tensor exist.
The last conservation law may be written as
ol - or + 3.4, - Uij&ij =0, (2.12)
where U is the specific internal energy, 7 is the heat supply per unit mass
and a; is the heat flux (efflux) vector. Equation (2,.12) is the energy
balance statement.
In addition to the four conservation laws, a generalization of the
second law of thermodynamics may be introduced. The second law governs
the local growth of entropy for elements of mass moving with the medium.
We use a treatment based on Sommerfeld [44], except that we consider the
more general case where motion of the medium and mechanical work effects
are taken intc account.
One starts by writing the energy balance statement for a reversihle

process as follows:

du = 8q - 8, (2.13)



—
[ ]

where dU (the change in internal cneryy) is a perfect dJdifferential, dq is
the change in heat energy and &W is the increment of work done, All terms
are per unit mass, and the ''system’ is an element of mass moving with the
medium. One introduces entropy by writing the heat added as

8q = Tds, (2.14)
where T is the absolute temperaturc and s is the entropy per unit mass.
One may write the mechanical work term due to internal stresses as

-1 _ .
SW = —B{cij)R deij, (2.15)

where (Oij)R is the component of stress associated with a reversible process.

In general, the stress may be written

= (o0 * 955" (2.16)

g, .

1)

wiere Oij' is the component of stress due to dissipation or irreversible
processes. Substituting eqs. (2.14) and (2.15) into (2.13) gives

pdU = pTds + (oij)R daij. (2.17)

Introducing material time rate derivatives for the differentials in eq. (2.17)

yields

ol = pTe + (o, (2.17a)

1R &ij
One ohtains the rate of production of entropy by rearranging eg. (2.17a) as

follows:

3} —

1 » ) .
Ls = "-F QU - (glj)R eij. (2-18)

One applies the expression for the internal energy rate from eq. (2.12) and
eq. (2.16) to the entropy production relation to obtain:
- l »

L8 = = pr - X aiv q + Lo, ¢ (2.19)
Y T T "ij 1ij. )

The heat conduction term may be written as two terms, giving for

eq. {2.19):
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.
cediv (b= 5 ’—2[?1'. grad T) + 5 0y €, (2.108)
T

jo.
i

1} 1}
To interpret eq. {2.19a}, we consider a reversible process, where grad T = 0

and ¢!, = 0, e.g. no temperature gradient or mechanical dissipation. In this

casc, eq. (2.1%9a) reduces to
- -
ps + div () = 9-% (2.19b)

One may integrate eq. {2.19b) over a mass element with volume V and enclosing
surface area A.

d ELji rdm
Ic | sdm ¢ J, — da = = (2.20)
v A

T,

where dm = pdV and # is a unit outward normal vector from the element of
surface area da. One notes that eq. (2.20) is a statement of the conserva-
tion of entropy. The first term on the left-hand side is the time rate of
change of entropy in the mass element, the second is the efflux of entropy
through the.boundary A and the right-hand side is the entropy source term.
We recall that for a reversible process the entropy is conserved. Return-
ing to the local entropy production statement for the irreversible process
{eq. (2.19a)], one seecs that the last two terms on the right-hand side

must represent local entropy production. We write 0, the local entropy

production per unit volume as

6=-L (q.gradT) + a0/, ¢ (2.21)
2 V4 T %ij %ij. '

-y

The second law of thermodynamics requires that the local entropy production
be positive for an irreversible process, or

0>0. (2.22)
For a reversible process, one has

8 =20
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from ¢q. {2.19b). Each term on the right-hand side of eq. (2.21) must be

positive for an irreversible process, since for a process with no mechanical

dissipation (Cij 0)

= -

0=0 =-= (Q-grad T) > 0, (2.22a)
4 T

and for a process with no heat flow (a = 0), one has

5 = I S
0= Om =7 Uij Eij > 0. (2.22b)

From egqs. (2.21} and (2.22), we have
0 +0 >0
q m

and

1f one applies Fourier's law of heat conduction, we may write for the
heat flux vecter
>
q=-kgrad T, {2.23)
where & is the coefficient of heat conduction., The entropy production due

to heat conduction becomes, from eqs. (2.22a) and (2.23)}:

0 = 52 (grad T)*(grad T) > 0. (2.24)
9 7

From eq. {2.24) one sees that the coefficient of heat conduction must be
positive,

One may obtain a relation for c£j (the dissipative part of the stress)
by examining the entropy production due to the mechanical dissipative process,
e.g. eq. (2.22b). If one writes a linear relation between oij and the strain
rate éij’ one has

t -

gij = Eijmn €m (2.25)

Applying this to eq. (2.22b) gives
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6 =LE'. & &..v0, (2.26)
m T “ijmn mn "1j

a quadratic form in the strain rate tensor. For an isotropic medium, the
fourth-order tensor Eijmm must also be isotropic (see Appendix A). One

notes the symmetry
1 - 1

ijmn = “mnij

from the quadratic form (2.26). We write for an isotropic medium

ijmn = A 6ij $ ' (61m53n * 1n 6jm)' (2.27)
Applying eq. (2.27) to (2.25) gives
Oij = X 522 3 + 2ut Eij. (2.28

It is convenient to introduce intc eq. (2.28) a bulk viscosity g defined as

follows:
T 1
r o= 2_._;_2&_ (2.29)

We write eq. (2.28) in terms of the bulk viscosity as

where the second term on the right-hand side is traceless., Now one may write
the strain rate tensor as the sum of a non-deviatoric and a deviatoric (trace-

less) component:

- 1
. + (g.. - =
ij €39 (sIJ 5 6

-1 A
Elj = 3' § ij Eﬂ.i )' (4'30]
Applying eqs. (2.28a) and (2.30) to eq. {2.22b) gives

Lo, .0 (2 . 1 . 2
= FlElegy)” + 2 (eij - §5ij gl 1 >0 (2.31)

Eq. (2.31) requires that

1 1
¢ = 3A ; 2u >0

and u'>0, since the mechanical entropy production is the sum of two independent
quadratic terms: one associated with dilatational motion (change in volume)
and the other with shearing-type motion.

One sees that the second law of thermodynamics as stated in eqs. (2.16,
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21 and 22) requires that the heat conduction coefficient k and the viscosities
£ and u' be positive. In addition, the second law yields directly the con-
stitutive relation for the dissipative part of the stress tensor [eqs. (2.28}

or (2.28a)].

C. Linearization of Governing Equations

The type of disturbance to the medium we wish to analyze is a wave
or series of waves., We assume that this disturbance is relatively weak soO
that nonlinear effects are negligible. The disturbance may be considered to
be limited in extent spatially. That is, the disturbance is a wave front
due to some initial concentrated impulse. We consider the medium to be at
rest and in an undeformed state in the absence of the disturbance, where
: = (0 and 3 = @¢. The undisturbed temperatufe and density may be denoted as
T0 and 04 respectively. In addition, the undisturbed field is assumed to
be uniform spatially, so that, if we denote the disturbance effects by a
prime, we may write

a= 0 (X, t) (2.32)

Y
v

u

v'(I, t)
p=pp* o' (X, t)
T=Ty+ (X, t)

In eq. (2.32) we assumed the primed quantities are small in the

following sense:

L]
pt <L po
LR
T T0
y'2< ¢

ut << c¥t,



where c¢ is a speed of propagation in the medium, and Vt is a time scale
such as the wave pulse duration. The strain tensor elements and the rate

of strain tensor elements are also taken as small, or

leijl << 1
. !
SPLEA

We linearize the governing equations (2.9) and (2.10) by retaining only
first-order terms in the primed quantities listed in eq. (2.32). Equation

{2.9) reduces to

3p' >
3. 4oy V= 0. (2.33)

The equation of motion [eq. (2.10)] reduces to

av'
- 3.0, = pof

—d
pO ot i7ij (2.34)

is
where the material time derivative reduces to a local time derivative due

to the linearization, or

() _d40)
at dt
>
The velocity may be written as v = b3 for the linearized case, converting
eq. {2.18)to
aZu.
po—;:%-- aicij = pofj' (2,34a)

The energy conservation statement leq. (2.12)] and the entropy production
equation (2.19) may be linearized by replacing the density p by Py and by

interpreting the time derivatives as local derivatives.

D. Constitutive Equations

We wish to relate the stress tensor 03§ to the independent variables
in the thermo-mechanical field. One may consider the displacement and its

time and spatial derivatives and the temperature and its derivatives as the
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independent variables. We write the stress im functional form as follows:

v a u d.v. T, 39

K, 9%, Y%, T, + . ..) (2.35)

%5 7715 Y, K
One may climinate the displacement, velocity and the skew-symmetric parts
of the displacement and velocity gradients from the functional form by
ruling out dependence of the stress on the rigid-body motion of the medium.
This simplifies eq. (2.35) to the following:

E

g.. = 0, 1k

ij 1j (Elk, , T, BkT). {2.35a)
The linearization [eq. (2.32)] implies that the stress is only a function
of the ambient temperature TU, reducing eq. (2.35a) to

Uij = Uij (Clk, elk, TOJ, (2.35b)

where the time derivative reduces to a local derivative for the strain
rate.

We recall from the thermodynamic discussion that stress was broken
into a reversible part and a dissipative part [eq. (2.16)1:

.= {0..) + 0.
01] ( 13)R U1J.

A constitutive relation has already been obtained as a consequence of the
second law of thermodynamics for the dissipative part of the stress {eqs.
(2.28 and 28a)]. All that remains is to obtain a constitutive rel&tion
for the reversible component (dij}R. Ke refer to the energy balance
statement for a reversible process

du = $q - OW. (2.13)
Setting the heat increment to zero and introducing eq. (2.15) to eq.(2.13)
gives

dy =-dwW = (0..]R d €54

ij j (2.36)

Ol

Linearizing this by writing p = Po gives

podU = + {Gij)R deij (2.37)
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One sees that the left-hand side of eq. (2.37) is the strain or defor-
mation energy stored per unit volume, and dU must be a perfect differential
for a reversible process. If the right-hand side of cq. (2.37) is to be a

perfect differential, one may write the stress as a linear function of the

strain

(03 = I

( ij)R Lijmn Emn. (2.38)
Applying this relation to eq. (2.37) gives

pdu =E.. € dE.. (2.39)

o ijmm mn o ij
Formally integrating eq. (2.39) gives

1
= = E £
PV = Eiim “m Tij, (2.40)

a quadratic in the strain tensor. The integration constant Uo is set to
zero for zero strain. The quadratic form of eq. (2.40) implies the
following symmetry:
1iijmn = bmnij.
We are interested in an isotropic medium, so we may write in a manner

analogous to eq. (2.27} the following

. (2.41)
pjm = A%4; S * M0in 850 % din Simd
where X and p are Lamé constants. We substitute this result into
eq. (2.38), giving
(Uij)R = kggg aij + 2y eij (2.42)

For the isotropic medium, eq. (2.40) for the internal energy due to defor-

mation becomes:

b U = 3 Dileg? + 2 )] (2.43)

One notes from eq. (2.37) that the reversible part of the stress is related
to a thermodynamic derivative as follows:

0.0, = 0. S
iR = Po e, (2.44)

Js
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where the derivative is taken for constant entropy, since we restricted
8q = Tds to be zero. The Lamé constants X and u in eq. (2.42) are then
taken for adiabatic deformations (e.g., no heat conduction).

We summarize by writing the stress tensor in its most general form

from eqs. (2.16)}, (2.28) and (2.42) as follows:

055 = O35)p * (0fy) =
= (Aeggéij + 2ueij) + (k'sigﬁij ¥ 2u'eij)
i 3 5
= O NRR S 200+ b e (2.45)

Lquation (2.45) is the comstitutive relation for a damped (viscoelastic)
isotropic linear solid undergoing small deformations. The constitutive
vrelation for the elastic solid may be obtained from eq. (2.45) by setting
the dissipative terms to zero, orT

X o= 0.

and

uto= 0,
Similarly, the constitutive relation for the undamped liquid may be
obtained by setting both the rigidity u to zero in eq. (2.45) and the
damping terms,yielding

g.. = (Uij)R = kegﬂé

ij ij (2.46)

Recalling the usual relation between the pressure fluctuation for an
inviscid liquid and the stress:

G,. = - p'ﬁi

i - (2.47)

]
onc sees that

po= - ;\621'
That is, the pressure fluctuation is proportional to the adiabatic volume

change or dilatation.



One may obtain the lincarized equations of motion for the
viscoelastic solid, the elastic solid or the inviscid fiuid by
substituting the appropriate constitutive relation into the
momentum conservation equation (2.34a). For the viscoelastic solid,

we use the constitutive equation (2.45), giving

2
Doatui - [(A+ W+A" + u‘]Bt]'c}i'aEu)n - [u o+ u~at]aj3jui = pofi (2.48)

or, in vector notation

2+ ¥ =3
o % - L0+ W+ WV - (e uwa )T =ogh. (2.482)

Now v? operating upon a vector is not an invariant vector form [44].
Instead, it must be interpreted as an operator of the form:

920y = We() - Ix(¥x( ). (2.49)
Using this identity allows us to express eq. (2.48) in an invariant
form:

-

7>
0gdgu - [Owzp) + (' 2u')at]V(v-G) + [p+u'at]Vx(VxG) = 0of - (2.50)

The equation of motion for the linear isotropic elastic solid is
obtained as a special case of eq. (2.50} by setting the damping terms
to zero, OT
A =0
and
' o= 0,
Applying the comstitutive relation for the inviscid liquid f[eq. (2.47)]

to the linearized equation of motion (2.34a) gives:
2

Oo%€¥-+ W' =p F. (2.51)
Onc may manipulate eq. (2.51) into the acoustic wave equation as follows.
The pressure p is written as a function of the density and entropy
(e.g., the thermo-mechanical equation of state):

P =P [D,S). (2.52)
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We expand eq. (2.52) about the ambient state p ,¢ .S, as follows:
ap .
p=p,+ (gs-s) + (5(0-p,) + - (2.52a)

From this expansion and eq. (2.32} one may express the pressure fluctuation

as
p' = (%BJ s' o+ (%BJ p' o+ (2.53)
2 ) . R .
For an adiabatic (and isenmtropic) process, we write
3 _
p' = (Hggso' (2.53a)

The adiabatic sound velocity <, is defined in terms of the thermo-
dynamic derivative as follows:

2. @
¢y, (ao s (2.54)

Applying eqs. (2.54) and (2.53a) to eq. (2.51) gives
2+ 20, _ o2
poatu v oogVe = Dgf. (2.55)
Equation (2.55) may be written in a wave operator form after applying the
linearized equation of continuity
t T a =
Bto * 0" (Btu) 0. (2.33)

Taking the divergence of eq. (2.55) gives

gvzo' = n.9F . (2.56)

2
ooat(v u) + ¢ 0

The divergence of u is, from eq. (2.33)
V'_]Ez - -;]a'-—p'_
%

We eliminate ved from eq. (2.56), giving

2 1 4] -
@ - L - D (2.57)
<. ot o

Equation (2.57) is a scalar inhomogeneous wave equation in p', the density
fluctuation. This is the classical result of theoretical acoustics [24],
{34]. We see herc how the wave operator is developed from a thermodynamic

state equation for the pressure and from the linearization process.



I1I. SIMPLIFICATION OF TIE VECTOR FIELD EQUATIONS

In the previous chapter, linearized vector ficld cquations
were developed for the solid medium (2.50) and for the inviscid
fluid (2.51). The field cquations are simplified in this chapter
using techniques developed by Ilanscn (a discussion of these appears
in Morsc and Feshbach [32]) for elecctromagnetic wave propagation
problems. The application of thesc techniques to wave propagation
in linearized solids is due to A. Yildiz [58]. After simplifying |
the field equations for the solid to scalar liclmholtz equations,

a Green's function formalism is introduced to model the acoustic
field (the lincarized inviscid fluid) due to the monopole type

of excitation,

A, The Elastic Solid

We write the field equation for the clastic solid from
cq. (2.50)as

poaiu e WX E] - W20V (Tu) = o F (3.1)

This is in an invariant form, so it applies to any orthogonal curvi-
linear or Cartesian coordinate system. Taking the divergence of
eq. (3.1} gives

2 2 + -+
[poat - [(A+20)}V71Yeu = pOV f, (3.1a)

where the second term in eq. (3.1) drops out because V*Vx( ) = 0.
We manipulate eq. (3.la) into the form
2 1 42 - 1
v- - ~ Bt] Veu = - ~§-(V ), (3.1b)

‘L ‘L

where
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and L is the longitudinal sound velocity.

3

We note that since the divergence of a vector is a scalar, eq. (3.1D)

is a scalar inhomogeneous wave equation.

Taking the curl of eq. (3.1} gives

2 > -
[003t + UVx¥x] (Vxu) = anxF, (3.2}

where we have used the result curl grad ( } = 0. One writes eq. (3.2)

in the following form:

(vxvx + L5 321 (Vx0) - L wxh, (3.23)
“r ‘T
where c% = U/OO, and Cr is the transverse velocity.
Recalling eq. (2.40) one notes that cq. (3.2a) can be written as
a vector wave equation
2 1 2 + 1 Lx
v- - = Bt}(qu) = - (Vxf) {3.2b)
Cr Cp

It is convenicnt at this point to decompose the displacement

vector and the body force vector into longitudinal and transverse

parts as follows:

- -+ ->
= +
i 'lJ.L UT
T-% .1 (3.5)
= +
L T,

where the subscript L refers to the longitudinal component and T to

the transverse. We set

I
@D

-+
Ve = [} . =
u s v ¥T

<1
%
c+
u
o
<]
P
it
—
u
o
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The longitudinal field is then defined as the curl-less component
and the transverse as the divergence-less part. Lquations (3.1b} and

{3.2b) may be written

2 1 > 1 5
v: - — a3, 1(¥V ULJ - 5 v fL) (3.5)
‘L “L
1 .2 1 >
[VxVx + -5 at](quT) =+ = (foT) (3.6)
Cr 1

Eqs. (3.5) and (3.6} show why ¢, was termed the longitudinal and
cr the transverse sound propagation speed. The longitudinal component
of the field propagates at speed cL and the transverse at Cr- We re-
call that taking the divergence of the field equation (3.1) annihi-
lated the transverse component of the field and, similarly, taking the
curl climinated the longitudinal. Taking the divergence and curl of a
vector field separates the field into longitudinal and transverse

polarizations.

We manipulate eqs. (3.5) and (3.6) as follows:

v - 3§)SL L F=0 (3.5a)
‘L L
VX (VX (VX + 15 ai'ﬁT - lz—"%T] < 0 (3.6a)
Cr Cr

We may also write, from eq. (3.4),:

2 1 2> 1 % .
Ix[ (V" - 5 Bt)uL * =5 fL] =0 {3.5b)
c <
L L
- 1 2= 1 =, _
V-[Vx(quT) +-—§-3tuT - _f'tT] =0 (3.6b)
°r °r

From vector analysis, we know that if both the divergence and curl of a

vector field vanishes, then the field itself must vanish. The quantities
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inside the brackets in eqs. (3.5a and b) and (3.6a and b) must vanish,

leaving
2 1 2.+ 1 =
(vo - ;i-at]uL = - zﬁ'fL (3.7)
and L L
1 2. 1 =
[VxVx + —i-at]uT =5 fT . (3.8)
‘r “r

Both of these are now vector wave equations, and we note that the
Vz operator in eq. (3.7) must be interpreted as V2 = VWe( )} from

eq. (2.49), since it operates on a longitudinal field.

Introduction of Fourier Transform in Time

Equations (3.7 and 8) are differential forms in space and
time. Solutions are obtained more easily by transforming in time first.
This reduces the differential form to an algebraic form in the transform

(frequency) domain. One introduces the following Fourier transform

pair:

F {w) =[ fFetye TWqe (3.9a)
and -

£(t) = %}?f F(w)e “Tdw (3.9b)

flere F{w) is the transform of f(t) and w is the frequency. The second
relation is the inverse transformation. From eq. (3.9b) one sees that
differentiation in time is equivalent to multiplication by iw in the

frequency domain, or

f(t)+ F(w)
and
D

One may transform eqs. (3.5, 6, 7 and 8) as follows:



G S (3.5¢)
L 3 Cl]-_t.
[VxVx - ka](Vxi) = 15-(vx§r) (3.6¢)
C
T
(7« kYo = - L3 (3.7a)
C
L
[Vx7x - K210, = L3 (3.8a)
C a2
T

where k, = w/cL, k

L = w/cT are the longitudinal and transverse wave-

T

. > -
numbers, respectively. The field quantities u and f are now umderstood

to be functions of w instead of time t, or

-

N
u(x, w)

u
and = F(x, w)

Solutions to the Homogeneous Vector Equations

We write the homogeneous forms for the transformed field
equations by setting the body force ? to zero. In general, no body
forces act in a simple thermo-mechanical field. Later, we introduce a
field excitation in the liquid medium by considering f to be concen-
trated in a small region of space. The solid medium, however, does not
have any direct excitation, so the field is described by homogeneous dif-
ferential forms in space. We reduce eqs. (3.5c¢), (3.6¢c), (3.7a) and

(3.8a) to the following:

(7% + ki)v-GL -0 (3.10)
7% + ki)EL -0 (3.10a)
(VxVx - k%)(?xﬁT) - 0 (3.11)

(VxVx - k%)ﬁT = 0 (3.11a)
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Solutions to eqs. {3.10a) and (3.1la) may be written as in the clas-

sical electromagnetic theory [32] as

u, = V¢L (3.12)
and

> >

ug = VXA , (3.13)

where ¢L is a scalar potential and A is a vector potential. One usually
imposes on the vector potential the following condition
-,
VeA = 0 (3.14)
to eliminate the possibility of a component of X being the gradient of

another scalar function. If one writes

K=2 +v
3>
where Ve&' = 0, the divergence of A becomes
vk - 7o .

The 726 term does not contribute to the solution, eq. (3.13), since curl
grad & = 0. The condition (3.14) eliminates this ambiguity.

Turning to the longitudinal field for the present, we rearrange

eq. {3.10a)
e (v a
A A CALLY S (3.10D)
L k2
L
Substituting eq. (3.12) into the left-hand side of this gives
T(g, + L TR) =0 . (3.15)
L 2 L
kL
‘Integrating this result gives
> - L wad 3.15
_¢L(x’ U.J) - k—z- ( uL) + ¢O[m) , ( ' 3]

L
where ¢O(w) is uniform spatially, and may be set to zero with no loss in

generality because we want solutions that vary spatially. Substituting



32

this result into eq. (3.10) shows that ¢L satisfies the following

scalar Helmholtz equation:
2 2
(V" + kLJ¢L =0 _ (3.16)

One sees that the longitudinal fiecld is the gradient of a scalar
function which is obtained by solving a llelmholtz equation.
Looking at the transverse field, we see that the vector potential

% is a solution of eq. (3.11a) provided vk = 0, or
(VXVx - k%}ﬁ = 0.

This shows that if a transverse vector satisfying eq. (3.11a) can be
found, the curl of the vector is also a solution. This verifies that
eq. (3.13) is a solution to eq. (3.11a).

We wish to find expressions for the vector potential K. To proceed
further, we must specify the coordinate system to be used. A cylindrical
{r,z,0) system is used, where z is the vertical axis. This is the most
convenient since the boundaries lie in the (r-8) plane [Figure (1)], and
we expect to have symmetry in the polar coordinate 6 due to the type of
field excitation.

Following the discussion in Morseand Feshbach [32], we express the
vector potential as

Kus = ke %y, (3.17)

where ¢HS is a scalar function. The subscript HS denotes this solution
as a "horizontal shear' (transverse)} wavec. We see from eq. (3.13) that
the displacement of the HS polarization is in the r-8 (horizontal)

plane. The condition (3.14) requires that
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By S
This =y 325 =0,

or
hys = Pg (s 0, @) (3.17a)
From the discussion above, we know that if the form (3.17} is a

solution to the transverse field, the curl of it is also, or
Ry = (8 0,0), (3.18)

where ¢VS is another scalar potential function. The VS designation
implies that the solution is a "vertical shear' wave. This is evident
due to the curl operation. The kT factor has been introduced in eq.

(3.17) to give ¢HS and ¢V§ the same dimensions.

We need only verify that solution (3.17) satisfies the field
equation. We substitute eq. (3.17} into eq. (3.11a), using condition

(3.14) to give
2 2
V" + kT)¢HS =0, (3.19)

where eq. (2.49) has been used. The scalar function for the 1S
polarization must satisfy the llolmholtz operator (3.19) if (3.17)
is to be a solution to the transverse field. The same condition

must apply to the VS polarizatioen if it is to be a solution, or
2 2
(V° + kT)¢VS =0 . (2.19a)

To summarize, we have reduced the elastic field equation into
transverse and longitudinal polarizations. Solutions for both have
been obtained in terms of scalar functions satisfying Helmholtz
cquations., The transverse field has two polarizations denoted as

HS and VS waves. The displacement field may be written as
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u = V¢L

u k. .Vxe 0
uys = kp¥xe, %s (5.20)
;VS = Vx(Vxe ¢VS}

and the potentials ¢L, ¢HS and ¢VS satisfy

2 2.
(V" + k)¢ = 0
b
and (Vz + k%] HS = Q -
¢VS

In addition, ¢HS = ¢Hs(r,8,w). The problem has been reduced to finding

solutions of scalar partial differential equations.

B. The Viscoelastic Medium

We wish to analyze the field equation for the viscoelastic

medium given Dby
0,920 - [w2u) + (V20 )3 JV(T+E) + L3 JVX(7R) = oot

(2.50)
One notes that this differs from the relation for the elastic solld
only by the addition of the damping terms (first-order time derivatives).
We may separate this field equation into longitudinal and transverse
parts as was done for the elastic solid. First, we take the Fourier
transform of eq. (2.50)
puZl v [Ow20) + dw(+2p") V) + - (urian)VXVA) = -pgf

0
(3.21)
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We take the divergence and curl of (3.21) to obtain

(pge? + [w2u) + G(A+2u )T H T = -py (7+8) (3.22)
and
[pom2 - (rion! ) VxVX)(VXL) = -0, (9xF) (3.23)
Introducing < and = and damping coefficients bL and bT defined as
ARy o
by = 2 s bpE—x
pe] peT

Bas. (3.22) and (3.23) may be written

2
{1+ iwaJUZ <o = - ij W+ $) (3.22a)
L ‘L
and {-(1 + 1ub)7x¥x + £ J(7x) = - Looxhy (3.23a)
L ‘1

In the solid medium the body force ¥ does not arise, so we write

these equations in homogeneous form

% + ki)(v-ﬁ) =0 (3.24)
2 -
(-VxVx + kT)(qu) =0, {3.25)
where 2 w2
ey S
CL(1+imbL)
2
and k% :.7?*J£_____
cT(1+1wa)

Equations (3.24) and (3.25) are Helmholtz operators. The field equations
are of the same form as eqs. (3.10) and (3.11} for the elastic solid.
We may write, analogous to eq. (3.10a) and (3.11a) the following for the

viscoelastic medium:
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2 2.+
(V" + kL)uL =0

A
u., = 0 .

and (VxVx - kT) T
The introduction of viscoelasticity does not change the form of
the field equations in the frequency domain. The only effect is to
change the wavenumbers to complex quantities. We see from the form of
the wavenumbers given in eq. (3.25) that thev are in the second and
fourth quadrants of the complex planec. We may use the same solutions
for the field obtained in the previous section, eqs. (3.12}, {3.17)}

and (3.18), where the potential functions ¢L, ¢”q and ¢VS satisfy

llelmholtz operators
2 2
(V- + kL)¢L = {

s |

2 2
@ + k2
e

0

VS

where now the kL and kT are complex quantities instead of real numbers.

C. Field Excitation in the Liquid

The field equation for the inviscid liquid can be written
from eqs. (2.46) and (2.34a) as

2 -+
Pyl - AV(Veu) - p0¥. (3.26)

This equation can be obtained as a special case of the elastodynamic

equation (3.1) by setting the rigidity u to zero., This approach was

shown to be consistent with the conventional one used in fluid mechanics

where the stress tensor is expressed in terms of the pressure [eq. (2.471.
If one takes the divergence of eq. (3.26}, one obtains

2 1

fvi - — 3 >
0 Ch (3.26a)



where o is the adiabatic sound velocity given as

or b
c0=w=L.

Now we separate the vector fields U and f into longitudinal and

transverse parts. The body force f must be longitudinal in the liquid,

or
f=F
T L
and (3.27)
fT =0
Taking the curl of eq. (3.26) then requires
Vxd = Vxig = 0. (3.28)

The dynamic field in the liquid is then purely longitudinal, or

-

= 3.29)
u = u - {3,

We may write eq. (3.26a) as

N
Ve f
2 1 .2 > L
[V - ;E-at] (Vv uL] = - c2 (3.26a)
0 0
or, in the frequency domain
7-f
2 2 > L
(V™ + kOJ(V-uL) = - = (3.26b)
0

where kg = w/cU. Now, since the divergence of a vector is a scalar, we

may write, in the frequency domain,
_)._
Vrup = kg &
and (3.29)

- 2
V-fL = —ko wo ,
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where ¢O and wo are scalar functions for the fluid's displacement and
body force. The constant factors in eq. (3.30) were introduced to make
the ¢0 potential dimensionally consistent with the longitudinal poten-
tial function Q‘JL for the elastic solid given in eq. (3.15a). Substitu-

tion of eq. (3.30) into the field equation (3.26b)} gives
il

5

o

(V2 + k(z})rbo = - (3.31)

This result is seen to be an inhomogeneous scalar tlelmholtz equation.
The excitation to the field (liquid overlying a layered solid) is taken
in the liquid. The excitation must represent the effect of an acoustic
transducer as a sound source. We wish to represent this sound source in
terms of the body force ¥L or its divergence. Now, the transducer is
small relative to the other dimensions of the acoustic field. We may
consider the sound source and the body ferce field to be located in a
small spherical region of radius a. If one integrates the diverpgence

>
of f over the volume V of the sphere, one obtains using Gauss' theorem:

j(v-?‘)dv = jﬁg%-i}ds. (3.32)

v 3
) - . . .
If one assumes that the force field f acts in a direction normal to the

surface of the spherical volume, or radially outward, we may write the

radial component of T as fr . If, furthermore, wc assume fr is constant,
one has
w-Frav = dS = 4ma’ (£.) (3.32a)
T r'r=a . !
vV S :

Equation (3.32a) implies that the divergence of £ may be represented by

. . + > > . . . >
a Dirac delta function 6(r-r'), where r is the field point and r' is
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the source peint. We recall the characteristics of the delta function|[54]

fd{?-?')dv =1 ]
V

Lot

{3.33}

We note that the right-hand side of eq. {(3.32a) is a constant, so
from the integral representation of the delta function in (3.33) we see
that V*? is proportional to the delta function. We also see from eq. (3.30)
that the force potential wo is proportional to the delta function. We

may write for the right-hand side of eq. (3.31) the following:

Coe
2
“0

= H{w)8(z-1'), (3.34)

where H(w) is the transformed from of the time dependence of the field
excitation. That is, eq. (3.34) separates the spatial dependence of y,
from the time or frequency dependence. The inverse transform of H(w)

will be taken as h(t). Now, one may denote the response of the field ¢O

¥
due to the excitation as a Green's function([34],|50) denoted in the
frequency domain as

G(r, v, w). (3.35)

Applying eqs. (3.34) and (3.35) to (3.31) gives for the liquid field
2 2 > i
(V" + ROJG(r,r‘,w) = -H(w)8(r-r'). {(3.36)

Denoting the Green's function in the time domain as
> >
g(r,r',t)
enables us to write eq. (3.32) in the time domain as follows:
1

S 2
0

v 22)g(F,71,t) = -h ()8 (F-T") (3.37)

[g]
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Equation (3.36) is much easier to solve for the present problem,
so this form will be used in the following chapters. After solving for
the Green's function in the frequency domain, we obtain the time domain

representation by taking the inverse Fourier transform (3.9b)

o O
g(_{:,;',t) = %f G(;,?',m)elu}t dw (3.38)
T Am

The field excitation as given by eq. (3.36) occurs only at a
point T'. From the definition of the delta function (3.33), one sees

that eq. (3.36) reduces to

(V% + kg)c(?,}",m) =0 for ¥ # 7. (3.39)

- ->
That is, the governing equation is a homogeneous form except at r = r'.

The displacement field in the liquid may be expressed in the same form
as for the solid, or

> ES >
u, = VG forr =r1', (3,40)

from eq. (3.12) for the elastic solid. This is a solution to the field
equation (3.39) due to the form taken for Voa in eq. (3.30).

The location of the source point T will be taken én the z-axis
in a cylindrical coordinate system (r,z,8). The type of excitation is
obviously symmetric with respect to the angular coordinate 8, so the
field will be a function of only z and r. Furthermore, one would not
expect this source representation to excite the HS polarization [eq. (3.17)].
The HS polarization consists of motion in the r-6 plane only, and does
not vary with z. Therefore, the dilatational nature of the acoustic or
liquid field excitation:  cannot impart this type of motion. The motion
in the solid field will then be restricted to longitudinal and VS polari-
zations., In addition, the @-symmetry in the liquid wiil apply as well

to the solid.
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D, The Stress and Displacement Fields

We wish to express the stress and displacement fields in
terms of the scalar potential functions > ¢HS and ¢VS' Due tec the
symmetry in the field, we use cylindrical polar coordinates (r,z,6)
where z is the vertical coordinate. The displacement has been expressed

in terms of the potential functions in eqs. (3.20) as

+ -

uL = V¢L,

4. = k. Vx(é (3.20)

Uy = kpVx(€ dyq) ‘
and  Uyg = Vx(Vx€Z¢VS) ,

I W= on, 4l ¢ U Usi 2.49}, th ssion for u
where u = u + Upe + Uye. sing (2.49)%, ¢ expression for Uy, may
be written

> 2

uyg = V(98 byg) - V(€ 0y)

or (3.41)

Idyg

3z

> 2
Uyg = V) - €,V dyg -

To compute the expressions for the components of the displacement
vector, we recall some vector identities for cylindrical coordinates.

Taking f as a scalar and B as a vector field, we have:

_8f 4 L, 13f . 3f ,
VE=sr 8. 095 & ¥ 57 &,
3B 3B
_ 13 1_6, =z
05 - Tar OB Y1t R
38 3B 58 OB 3B
_ b T LIS r Zya 19 __r
VB = (Z a5 - 3708t G - 3r 0%t plarBy) - e,
and
2 2
2. 193 , 3r, . 1 3°f _3°f
VE=o5UsP r 7273 T3
r 86 9z

where B_, B, and B_ are the r, 6 and z components of B, and &_, &_, &
r’ 0 z ’ ? v S50 &

are the corresponding unit vectors.



We may write the displacement vector as:

+
u = urér + UG€B + uzéz

Applying eqs. (3.42) to (3.20) and (3.41) gives, for the various polari-

zations of the displacement vector:

9¢ ap o
> L 1 L L
Wy &t rEs % T3z S
3 EL
> 1 °%us HS
Us = X1 T 58 Sr T Tar O (3.43)
and 32¢ 32¢
- VS VS 3 2
Yys = B3z °r ' Teer et (;;E * kpldyg®,
The components of the displacement may be written
2
L. My, Kr 3%ys L2 ts
T 3T T af oroz *
3 3 32
oo s 10 s 5.44)
8 T 38 T 3r T 9683z y
and
3 2
7P 3 2
W, =5t * (azz * Kpddyg

The displacement field simplifies considerably when §-symmetry is
present. It simplifies even more when the HS polarization does not
occur. The field excitation discussed in the preceding section includes

both of these. We write for the displacement field of interest
2
9 . i bys
r or drdz '’
ug = 0 (3.45)

and o¢ 2
%y p 2
u, =37 ° (azz * kpdoyg

Equations (3.45) will be used to solve the boundary-value problem

to be developed in the following chapter.
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The simplified stress field is now developed. We recall the expres-

sion for the stress developed earlier

Oij = Agiisij + Zueij' (2.42)
Viscoelasticity can be introduced easily by taking the Lamé€ parameters
as complex constants in the frequency domain. Now, in eq. (2.42},
€00 is, in invariant notation, 7-u. From eq. {3.15a)

> 2
€99 © Veu = -kL¢L.

We write from eq. (2.42) the stress tensor in cylindrical coordinates

= AThu + 2
Orr T “ HEpr

= AVSU + 2
U2 7 u HE. .

e
g = AVeu + Zue
82 99 (3.46)

Opz = 2ue .,
.9 = 2HEg
OrB - Z“Ere'

The strain tenser in cylindrical coordinates is expressed in terms

of the displacement as [26]:

Ju
£ = =
Y ar
du
P
z7 az
] i l_BUB . EE
29  r 96 T
3u. 3w (3.47)
2 =+ 2
TZ Jz ar
, i l Buz . Bue
€26 T T 30 3z
2e -E-E-{-l?}jﬁ
T8  ar T T 38



Introducing the field symmetries reduces eq.

Ju

£ = —L

rr ar
3 = EEE

zz Az

11

E =_.£

g6 T
, ) Bur . Ju
€rz T 3z ar
2626 =0
ZETS =0

We apply eqs.

2 3
Err = 7 (O * 57 Oys)
ar
2
29 2
L. 3 .9 2
£ = +—-—-—( +k)¢
7z 822 oz az2 T VS
13 3_
€00 = T ar %L * 37 Yvs)
2 2
_ d P 2 2
Ze , = Tamy 0L T ar (B T3 Kpddyg
2828 = 0
Zere = 0

a4

(3.47) to

(3.47a)

(3.47b)

We apply these results to the stress field (3.46), expressing veu

in terms of the longitudinal potential to give

2

2 3 3

Top = “Akphp + 21 —5 (&) + =7 byg)
ar
ad

2 3 L .2
T,, = “Mkpdp + 2u 57 {gzi + kpdoys]

2 13 5
Ogg = ~Akpdp + 210 1 57(0p *+ 57 dyg)

(3.48)



7
y 9t 3°

O =V artar 2 R0
gz
= 3.48
Ozﬁ i (3.48)
O.g = 0.

Equations (3.45) and (3.48) are thc required expressions for the
displacement and stress fields. These expressions will be used to

evaluate boundary conditions at interfaces between different media.
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1v. THE SOLUTION OF THE BOUNDARY-VALUE PROBLEM

A, Preliminary
We wish to derive an expression for the response of the

system shown schematically in Figure 1. The system is a field con-
sisting of a liquid layer overlying a layered solid halfspace. We
place an acoustic source in the liquid and use the linearized viscoe-
lastic model for the solid. The precise geometry and coordinate system
used for the problem is shown in Figure 2. The source is located on
the z-axis of a cylindrical coordinate system. The symmetry of the source
eliminates the polar (8) dependence and HS polarizations in the solid
are ruled out.

The problem is posed as follows. We wish to solve the governing

equation for the acoustic field
2 2 I -+ >
(V" + kO)G(r,r',w) = -Hw)8(r-r') {3.36)

subject to appropriate boundary conditions at the surface of the liguid
layer and at the liquid-solid interface. Now, the acoustic field is
coupled mechanically to the viscoelastic field, so we must solve two

Helmholtz equations for each solid layer
2 2
(v + ij)¢Lj = 0 {3.16)

2z

(v i=1,2, ...n, (3.19a)

+ k%j)¢VSj =0,
where the subscript j refers to the particular layer. The problem will
be solved by introducing a Fourier-Bessel transform {55] to the governing
equations (3.36), (3.16) and (3.19a). Then boundary conditions will be
applied at the interfaces between each layer and at the surface of the

liquid, in accordance with the results of Chapter II. We begin by
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solving eq. (3.36). FLirst we express the Dirac delta function as [101

S{r)dé(z-2")

S(r-T') = 21y

(4.1}

This form implies that the source is at r = 0, z = z', as shown in

Figure 2. The Green's function may be expressed in the form

-
G(r,r',w) = G(r,z,z',w). {4.2)

The Vz operator in eq. ({3.36) reduces from (3.41) to the form
3 .. 90

_)+
ar az2 .

2 13
Vo= T Br(r

Applying this result and eqs. (4.1) and (4.2) to eq. (3.36) gives
13 B J

2 ]
& v 160,z = - SRl

N é—f(r g’;) + ;5 e H(w} (4 3)

We apply the Fourier-Bessel transform to eq. (4.3) to eliminate
the variable r as a differential form., The Fourier-Bessel trans form

pair is written as [£1]
glz) = Jrg{r]JU(;r)rdr
0

[as]

g(r) = fg(c)JO(chcdc,
0

f

where the bar under the variable denotes the transformed quantity. The
zeroth order Bessel function has been used in eq. (4.4) due to the 6-
symmetry. Following a related calculation for a ring source excitation

from Stakgoid [51], we transform eq. (4.3) using eq. (4.4) to obtain

m Z

15 3 , 4,2 Cw) =

Jf§'§?[r 5 6(r.2,2 ,w) Jrdr + (dz2 + ky)6(g,z,z'w) =
0

- '5(2'3;)“(‘”) uﬁ(r)JO(Cr)dr, (4.5)

where G 1s the transformed form of the Green's function.
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bue to the sifting property of the delta function, the right-hand
side of eq. (4.5) reduces to

-8(z-2")
2m 7

since JO(D) = 1,
We apply partial integration twice to the first term on the left-hand
side of eq. (4.5), giving as & result

[ ?
2

C k- g6, = - 802-2) o) (4.6)
dz

2n

Equation (4.6) is an ordinary differential equation in z. The T-
dependence in eq. (4.3) has been reduced to an algebraic form in the
transform domain.

We solve eq. (4.6) using a Formal Green's function procedure given
in ilildebrand [14]. e write two independent solutions to the homogeneous
form of eq. (4.6) for the Green's function above and below the source:

2

{tl—w—.-, + (kz . E;?—)]g)(g,z’zl) = u fo_r 'Z,' < 2 < h
dz* 0 ‘ 0
and (4.7
a° 2 2
[;;2 * [ko - % )]§<(§s2,2'] =0 forO0< z< 2",

where G, denotes the Green's function above the source and G, below the

source. Solutions to eq. {4.7) are written

-a,2 a,2
G, = Pe + Qe for z' < z < h0
and (4.8)
-,z a.z
G, = Re + Se for 0 < 2 < z',
L2 2.5 L. )
where 3, = (G- - kU) , and the positive square root is taken. The

quantities P, Q, R and S are functions of T and the physical parameters.

These must be evaluated using the boundary conditions of the problem.



In addition, two requirements are imposed by the formal Green's func-
tion procedure. These are the continuity of G at the source (z=z')
and the jump in the first derivative of 3 at the source. The first
condition requires

E§(g,z‘,z') = 9<(c,z',z‘). {4.9a)
The second condition arises from integrating cq. (4.6) across tae

source in the =-direction:

z'+e
G
¢ LW
dz *dz’ "7 2m
z'-¢g
where £ is taken as small, and the sifting property of &(z-z') has
been used. This result may be written

d_ iy . 4 o _ H(w)
[dz E}EC’Z!" ) dz E;_(\(C:"-‘JZ )]Z‘—“Z' - i (4.9})]

.We may immediately impose one simple boundary condition. The
pressure must vanish at the surface of the liquid. From eq. (3.483,

we sce that the stress tensor for the liquid above the source is

2
Orr © Ugg =97 ~ikg G,

(4.10)

Gr@ N Urz - 062 =0

X

and from (2.47) we see the stress is related to the pressure by

This implies that the Green's function vanishes at the liquid
surface, or

G, (t,z,z') = 0 at z =h, (4.11)

Now we apply the three conditions (4.9a), (4.9b) and (4.11} to the
solution form (4.8) to eliminate three of the unknown functions of &,

leaving
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A
i ao ) ;
-2Q(0)e h]nh[d“(h“—ujl
’ ']
aLh (1. 12)

) . sinh - Hlw) .
0{me sinh a,(h,-2) + Tra sinhfa,(z -z}

oy
M

o
+

The function Q = Q(g,z,z') will be evaluated by applying boundary con-

Jitions at the bottom of the liquid layer.

B. COrecen's Function for the Unbounded Liguid

We develop here a special case of the problem wiere the fluid
is of infinite extent. The depth h, is infinite, and no solid bottom

is present. Solutions to eq. (4.7) must he written in the form

-a42
G, = Te for z > '
and ‘ (4.13)
a,z
G = Se for z < z'.
- 4
The result is a speccial case of cq. (4.8). The terms with the Q and R

factors were dropped so that the solutions vanish for |z| large. This is
equivalent to a radiation condition. We apply conditions (4.9a) and

(4.9h) to the solutions giving

-a, 7 a.z'
pe 0 = sc
and (4.14)
-a .z’ a.z'
Pe 0 + Se 0 - H (w)
2na
0.
The solutions become
—ao(z—z')
G. = lifw)e for z » z' )
- 4ma
0
_ ¢
and —a (z'-2) (4.15)
_ lilw)e .
§< ol o for z < 2",

U #



We may combine the two expressions {4.15) into one

-~a {z_ -z_)
H(w) e 07> "<

&1 aO

G(g,z,z",w) = (4.16)

where

5 Max(z,z"),
and

Ze

1

Min(z,z").
This notation is used to combine the two expressions G, and G_ into one.
It implies reciprocity. That is, the Green's function's form remains
the same if the source point and the field point are interchanged. We
write eq. (4.16) in the r-domain by taking the inverse transform using
eq. (4.4)

o —ao(%_-;:)

Hw) [ e "y erxa, (4.17)

G(r,z,z',w) = an 3
¢ "0

where we recall that ay = (Cz—kg)%. This result i1s the same as

Sommerfeld's [51], except that we have a more general time dependence

due to the H(w) factor. Sommerfeld took a harmonic time dependence,

The 47 factor occurs due to the form of eq. (3.36), and does not occur

in Sommerfeld's result because of his different approach to the problem.
The Green's function for an unbounded medium is well known [46]

[35]. We write _ik.R

Hw) e

G(r,z,z',w) = A R (4.18)

2 2.5 . . .
where R = [(z-2')}" + r°]° is the distance from source to receiver. One
may write eq. (4.18) in the time domain using the inverse Fourier trans-

form in time [eq. (3.38)] to obt in

o0 -ik .R .
g(r,z,z"',t) = 1 J( H(w)e 0 elmt dw,

3ﬂ2R -0
Recalling that ko = w/cD, one has
1 < +]
g(r,z,2',t) = — ffi(m)e lw(e-R/eglgy (4.19)

8T"R “-=



Eq. (4.19) is a superposition of harmonic waves due to the kernel

im(t-R/co)

e where the spectrum H(w) is a weighting function

in the frequency domain. For a harmonic time dependence, the weighting

function H{w) becomes a Dirac delta function, or
H(w) = 2ﬂ6(w—w0),

where @, is the frequency of the signal. Iiq. (4.19) reduces to the
following for the harmonic time dependence

iws (t-R/c,)
, _ 1 0 0
g(r)z‘:z Jt) - 4T{R e N (4.20)

This result is a harmonic, steady-state spherical wave train propagating

radially outward.
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~au.n aﬂ.z
1 A.e b Bic ]

P
—oi Aﬁamj
, (4.22
and , —a.2 aB.z )
¢ = m- C.e * + D.e 1
fg5 "Mt ! ’
where
2 2 %
a(lj = (C kOLJJ »
2 2 .4
ap, = -k, )¢
j (€ BJ)
and hj <z < h(j—l)' The aaj and aBj expressions represent a

positive square root. We change notation in eq. (4.22), denoting longi-
tudinal field quantities with an o and the VS field with a B subscript.
The potentials 9an and @Bn for the nth or last layer (a halfspace) must
vanish as -z » =, This requirement is met by sctting the functions An
and Cn in eq. (4.22) to zero. This is, in effect, a radiation condition.
We may consider the Bj and Dj terms as representing outgoing waves prop-
agating downward and the Aj and Cj terms as upward-traveling waves.

The solutions (4.22) may be applied to the expressions for the dis-
placcment ficld and the stress field eqs.[(3.45) and (3.48)]. Boundary
conditions are then applied at the jth interface separating the jth and
{j+1)th layer. The boundary conditions applicable to the solid-solid
interface are:

1. Continuity of stress

2. Continuity of normal displacement

3. Continuity of tangential displacement

Expressing these threc in the cylindrical coordinate system gives:
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1) uzj = Uz(j+1) at z = —hj,
i1) v, = u_,. "
Tj r{j+1) !
(4.23)
- =, LR
B0 5 T Va1
and ivy o _. = "

27.] Uzz(j+1)

Equations (4.23) may be expressed in terms of the unknown functions A_,
etc. in eq. (4.22) using eqs. (3.45) and (3.48). We write for convenience

from egs. (3.45) and (3.48):

ad
_ 3 B
Yr T 37 (¢a Y ’
B¢ 2
o 2 P
u = gt (k + _)¢) »
z 3z B az2 B
4.24)
3 2 (
- 2 J o e 2
Oz ° _Aku¢a + 2 55'{55— * (sz-+ kB]¢B]
3 2
and o] = 9 X 3

2
rz T M3 Pgp t g Kgddgl

We apply eqs. (4.24) to (4.23) using egqs. (4.22) to obtain a rela-

tion that may be written in matrix form as

[aj] A,

P R CTS R YSIPI (4.25)

where the [aj} and [a ] factors are (4%4) matrices, each Tow cor-

(i+1)
responding to one of the boundary conditions (4.23). The vector quan-
tities K. 5 and K(j+1) i are (4x1) column matrices related to the un-
known functions Aj’ Bj’ Cj and Dj in eq. (4.22). We denote the sub-

script (j+1} as j' for shorthand in the following. The [aj] matrix is

given as



I R I R 20,6ag5
a1 - 20,873, 20;8%, T
- 1 1 "aBj aBj
| T %] 3 3 |
(4.26)
" where B? = mzkéj' The [a(j+1)] = [aj,] matrix is obtained from (4.26)

by increasing the index by one. We write the column matrix as follows:

X = (4.27)

This relation may be written in a simpler form as the product of

a column matrix and a diagonal matrix. We write

A, (4.28)

R . = {A,
JJ J 3J J

]f

where the column matrix Ki' is
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o= aJ (4.28a)

a . h.
e ™ 70 0 0
-a_..h
a1 =10 e * ) o 0
S (4.28b)
a,. h,
0 0 e P73 g
-2_.,h
airls
0 0 0 e =) J
Substituting eq. (4.28) into (4.25) gives
—
a JIA. .IA. = [a.,][A., .TA., . 4.29
[ J][ it d [ J'][ 'LiTd ( )
where we recall that j' = (j+1). We solve the above for Kj by pre-
multiplying both sides of eq. (4.29) by the inverse matrices [aj]_l
and (A, j]“l to obtain
[ SR 7 VS I PU R PURR TPV 9 (4.30)
] ) ] i' J 1]

To simplify the notation, we may write the product of the four square
matrices in eq. (4.30) as one matrix relating Kj to Kj‘:
A

i [b(j+1},j11{j+1) ’ (4.30a)



QY

wihiere -1 -1
[bj',j]z[Aj,j] [aj] [aj,][AJ-',j]-

Now, the matrix [b(j+1),j] 1s a function of ¢ and the physical para-
meters of the (j+1)ﬂl and the jth layers. We may apply eq. (4.30a)
successively to relate the coefficients of any two layers. We note that
eq. (4.30) or (4.30a) are recurrence relations. That is, the coeffi-
clent functions of one laver are given in terms of those of the next
lower iayer and the physical parameters in Doth layers,

A successive application of eq. {4.303) will relate the coefficients
of the first layer (i=1} to those of the nth or last layer. We write
a product form as follows:

n-1

Kl - 2111 [ g1y ) Kn , (4.31)

where we may set
n-1

M] = T

CPP]
ey o (2*1),4

Eq. (4.31) may then be written

KI = ) &

, (4.31a)
where recurrence relation (4.30a) has been used to successively elimi-
nate the coefficients of the intermediate layers. The effects of the

intermediate layers are included in the [M] matrix, which is a function
of © and the physical parameters of all the layers. One may denote the

elements of the [M] matrix as mij’ i, =1, 2, 3, 4. Using eq. {4.28a),

we see wWwe may write (4.31a) in expanded form as
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A B D
S I I
aa] 12 a 14 aBn
B R I
——— o TN _L-p m ..l]_
aal 22 a 24 aBn
(4.31b)
C B D
-_1.“: m ..._}}__...+ m _n_
bt B
aBl 32 dmn 34 aBn
4] B D
.. I
aB1 42 aqn 44 aBn

Equation (4.31b) is a condensed expression for the dynamics of the
entire layered viscoelastic halfspace. The successive application of
the recurrence relation {4.30a) given in eq. (4.31) eliminates the coef-
ven, M-1): 1.e.

ficients Aj’ Bj’ c., Dj for j = 2, 3, , the explicit

J
calculation of the potentials ¢aj and ¢5? for the intermediate layers
is not necessary. We note that the four coefficients of the first layer

are related to only two coefficients in the last layer.
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D. The Liquid-Solid Interaction

The dynamic field for the system (Figure 2) may be deter-
mined now using the Green's function for the liquid (4.21) and the
result for the layered viscoelastic bottom {eq. (4.31b)]. The inter-
action of the liquid and the solid fields is determined by the boundary
conditions applicable at the interface separating the two media. The

boundary conditions are:

i} © =3 = -p! at z = 0
2z, zzl i
11) uzo - uzl (4.32)
iii) o =0 " s
rz,

where the subscript N refers to the liquid and 1 to the first visco-
elastic layer.

The first two conditions are continuity of normal stress and dis-
placement at the interface. These arise from the cquation of motion
and the continuity equation., The third is a consequence of continuity
of stress at the interface. We note that the inviscid liquid cannot
sustain a shear stress. The continuity of tangential displacement has
been relaxed due to the presence of the liquid.

One evaluates eqs. (4.32) using eqs. (4.21), (4.22) and (4.24) to

obtain the following matrix relation:



H[w)aocosh aOhO

h

9
[ “sinh ¢
{w) pﬂuj sinh P

| 1]

Equation (4.33} has five unknown functions A

1 o 2M(w)

) 2
0By (287 -k

a

ol al

2a

ol 2a

. ]
agcosh ay? "7

2_. .
Py sinh anz

three independent eguations.

2 2
) 0181(2C -k

ol

2 2 -
Z 4
2 . 22 L 2.2
s} TEeBagy 2pgBitiag
2 2 2.2
(2% _kBl) (2r Nkﬂl{_
(4.33)
0’ Al’ etc. and only
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We may reduce the number of unknown

functions to three by applying the result obtained from the recurrence

relation {eq. (4.31b)].

Equation (4.31b) relates the four unknown

functions in the first layer to the two functions in the last layer.

Applying this to eq.

_
aocosh aoho b12
2iimh ah. b
PpW 4o 22
i 0 by

where

b

13

(4.33) gives

[ 7
Ag/ag

Bn/aan

| %n/%gn

Nl!\.)

0

.
a.cosh a.z'

0

2 .
0.0 sinh a.z'

0

02| (4.39)




2
byy = agymyy - mpp) + gilmey + mysd,

= a _(m -m, ) + gz(m +m,,)
13 alt 24 14 34 4472

o
1

22 .2 2 2
22 = 0181020 - kg d(my, + myo) + (my, - mgy)204B1C a0,

) 2.2 2 2 2
byg = By (207 - kg dlmyy v my )+ (my, - Mg, 020,840 3,y
b, = 2a (m.. -m.) + (222 - K* ) (mor + m..)
32 a1 ™22 12 & g1’ 32 42
and
b = 2a . (m -m,, ) + (2§2 - k2 Y(m,, + m, )
33 ol ™24 14 R1/ \M3q4 T Mygt-

Since we are primarily interested in the acoustic field, we wish

to solve for Ay in eq. (4.34). Applying Cramer's rule gives

&1
AO = 2 EB. , (4.35)

where
2.
w 51nh(aoz’)

— L -
A, = K.a cosh(aoz } sz

1 170 0

and

- r - 2 * el
AO = hlao cosh(aoho) - thgw 51na(aoh0).

The factors Kl and K2 are given as

Ky = byybgs = bysbog

and {4.35a)

Ky = bypbag - bygbo,.

The expression for AO in eq. (4.35) is applied to the Green's

function expressions (4.21) to yield

2 .
L. t
2H(w) _. K,agcosh ajz' - K pw'sinh az
G, = sinh[a,{h.-2)]
—> 47a ov'n ; 5
0 K,a.cosh a,h. - K.p.w"sinh a.h
170 00 270 00
(4.36)
and ,
G = 2H (w) sinhfa (h-2')] Kjageosh agz - Kyp,w sinh a,z
—< " 4ma 00

2 .
0 Kla cosh a h - szow sinh aoh

0 00 0
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We may apply the notation used in eq. (4.16) for the unbounded fluid

to combine these two expressions for the Green's function, giving

2_.

p . oy

6(t,z,2") = 3—'1-:7}‘*-’)— {sinh aﬂ(hﬂ-z>j]['Kla()co"'}‘[aoz<] K pqw sinh(asz )
0

. L 2 .
LplaOLObh(aOhO} - szom 51nh(aoh0)
where, as before (4.37)
z, = Max (z,z')
and
z, = min (z,z'). This result is a consequence of the principle

of reciprocity whereby the form of the Green's functien 1is invariant
with respect to an interchange of the source and field point.

Equation (4.37) is the transformed expression for the solution to the
multi-layer problem. The factors Kl and K2 contain all the effects of
the layered viscoelastic subbottom due to their dependence on the [M]
matrix, as can be seen from eqs. (4.35a) and (4.34). The actual Green's
function must be obtained by taking the inverse Fourier-Bessel transform

of eq. (4.37). The expression for the Green's function in the frequency

domain may be written using eq. (4.4) as

G(r,2,2",w) =j;_f.1(c,z,z')J0(;r)cdc. (4.38)
One may observe that the singularitics of eq. (4.37} are important
when performing the integration indicated in eq. (4.38). Pole singu-

larities occur when the denominator of eq. (4.37) goes to zero, or

- . 2 . _
4. = K,a cosh(aoho] - K,p.t0 51nh(aoh0) = {, (4.39)

0o~ "1% 2P0
One may manipulate this into the following form
K.a
170
tanh(doho) = r:Z R
2P0
where the dependence on the water depth appears on the left-hand side

and the subbottom effects are on the right.



The Green's function expressions given in eqs. (4.37) and (4.38)
are too complex algebraically to analyze directly for the general case
due to the dependence of these expressions on the recurrence relation.
However, these forms, as developed here, are ideal for computer analysis
due to the introduction of the recurrence relation [eq. (4.30a)] and its
result [eq. (4.31)]. The recurrence relation reduces all calculations
to (4x4) matrix operations, which can be performed easily on a computer.
The general n-layer problem, if solved without benefit of a recurrence
relation, would require inversion of a (4n-2) square matrix. The order
(4n-2) of the matrix is governed by the number of coefficient functions

B

L

3
for each layer. The computation time of the analysis will become exces-

i Cj and Uj in the expression (4.22) for the potential functions

sive with a large number of layers. Applying the recurrence relation
reduces the computer time for n large due to the cascading feature seen

n eq. (4.31). That is, doubling the number of layers will result in an
approximate doubling of computer time. Another obvious advantage of the
recurrence relation is the conciseness of the notation and its generality,

both of which are advantageous for computer work.

E. S_-Decial Cases

The general expression (4.37) for the Green's function for the
response in a multilayered halfspace is too complex to analyze further.
We now examine some special cases that are of interest. The first case
we examine is that for one viscoelastic layer (n=1). In this case the
solid subbottom is taken as a homogencous halfspace. This problem has
been analyzed by Press and Ewing [40]} previously for an elastic solid

subbottom.
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1) One Viscoelastic Layer (n=1) In this case, the recurrence

relation (4.31} is not required. The [M] matrix (4.31a) and (4,31b)
reduces to

m22 =1

My, = 1 ,

and the other elements are set to zero. The bij elements appearing in

(4.34) reduce to the following

b1z = 2y
byy - &
bop = plﬂi(ZCZ - kél)
byz = 2018i;2381
b3y = 23y,
2 .2

beg = (257 - k81]°

Applying these to the expression for K1 and K2 (4.35a) gives

-~
i

22 2.2 2.2
p =P8 - kgy) - dpBilia yag

and K2 = _kélaul' Applying these results to the general expression

far the Green's function (4.37) gives, after some rearranging

G(g,z,2') = .
P 2022 3)%4a a2 jeosh(a.z J+a K sinh(a.z )
pl'4t “Kgy al?p1 07<’ 311 0%¢
= 211 (w) sinhla, (h,-z_)] 0
% R 1 a [(222-k2)%-4a .a_ t®]cosh(a.h Y+a k- sinh(ach )
0 0 g1 a1%g1% 0"’ T 2y1%p1 070
(4.40)

This result agrees with Press and Ewing's [40] equations (26) and (27),

after changing coordinate systems and notation. Our result contains a
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1/47 factor due to the Green's function formalism. We note that the
introduction of viscoelasticity does not change the Green's function form.
The parameters kBl and kal in eq. (4.40) become complex quantities, as

do a and a,, .
ol

g1
Another case of interest that can be derived from the general
result is the infinite-depth case. Here we simply take hO + @ in

eq. (4.37).

2) Infinite Liquid Layer Depth (h, > ). The general expression

for the Green's function reduces to the following:

E("—;:Z:Z‘} =
2.
K,a,.cosh{a,.z_ ) - K,p,w sinh{a_.z )
| 2H(w) e-(a0z>) 170 0°< 270 0"< (4.41)
T 4ma 2
0 (Kla0 - szow )]

Note that the frequency equation reduces to

Kyag = Ky

If one combines the two special cases by setting n=1 and hO -+ @,

the Green's function takes the form

’ b

Glg,z,2") = ;i aO[(Zcz—ké1)2—4aalaslgz]cosh[aoz<)+kg1aalsinh{aoz<)
- Zﬂiﬂl.e_[a°z>J< 3| 2.2 .2 2 4 (
4Wao 53 aO[(Zg -kBl) - 4aalaBlc ]+ kBlaal
L (4.42) °

Equation (4.42) represents the Green's function for the semi-infinite
liquid over a homogencous viscoelastic halfspace.

The result for the infinite liquid layer depth (4.41) may be re-
arranged and put into the following form by expanding the sinh and cosh

terms in the numerator:
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—a0(3>—z<J —ao(z>+z<) klao
+ e ————
4dma o

hlao-kzpnm

2
+Kapow

(4.43)

One sees that the first term is identical to ey. (4.16) for the unbounded
fluid. This implies that the term represents the direct wave (through
the water) from source to receiver. The second term is the response

due to the presence of the viscoelastic subbottom. The second term
includes the effects of reflection, refraction, surface waves etc. as
will be shown in Chapter VI.

One may write eq. (4.43) for one solid layer (n=1) as follows:

-a.(z. -2.) -—a, (z_+z)
oy L Mgy | 70T 05> Ee N ()
6(5,z,27) = 4ma, ¢ ve 5oy | (4.44)
where 2 i
L2 47 a_ _a
_ 277 .2 77 Tol'BRl}
N(E) = mao{sz 1 . ';J a1
- B1 g1 -
2
2 Az%a .a
) 2z 2 21?81
v = "‘301:(;:2"' DT J * A
B1 81
and m = pl/po.

Performing the inverse Fourier-Bessel transformation on the second term
of eq. (4.44) will be the purpose of Chapter VI. The next chapter will

be concerned with the inverse transformation of eq. (4.40}.
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V. GREEN'S FUNCTION FOR THE RESPONSE IN TUE LIQUID

LAYER OVERLYING A HOMOGENEQUS VISCOELASTIC [IALFSPACE

A. The Integral Form for the Green's Function. One may write,

from the result of the preceding chapter, the Green's function for

n=1, or onec viscoelastic layer (a halfspace}

2

G(C,z,z2',0) = %%égl~sinh[uo(h0-z>}] N(C;) , (4.40)
0 D(L")
where
2. 2,,2,2 2 A i
N(ZT) = mao[(ZE - 8} - 4aaaﬁc ]cosh(aoz<) + akg s1n1(a0z(
D(CZ) = manl(Zcz-ké)z - 4aaaﬁzzlcosh(aoh0) + aaké sinh(agh,),

341 = A0 g1 = A Ky T kg and Ry = kg

Lquation (4.40) is the Fourier-Bessel transformed form for the Green's
function. We wish to perform the inverse transformation using eq. (4.38).
The desired form for the Green's function in the frequency domain is

written as an improper integral in the form

G(r,z,z',w) = f(‘,(c,z,z',w).)n(t’,r)(,dc (4.38)
o) =~
or, from eq. (4.40): -
sinh{a.(h.-z_)] 2
Glr,z,2',w) = ) 0.0 > NED g ordr.
47 aqy DY 2) 0

(5.1)
This expression is an improper integral due to the infinite upper limit
and presence of singularities in the integrand. The integration of
eq. (5.1) has been discussed by Press and Ewing [40] for the clastic

solid case. The discussion here trecats the more general case wherc
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damping or viscoelasticity is included. As discussed before, viscoelas-
ticity effects are manifested by the imaginary component of the wavenumbers

ka and k, in the subbottom.

B8

We choose to manipulate eq. (5.1) so that the range of integration
includes the whole line, or
—w ¢ [ < o To Jdo this, we note the following relations involving

zeroth order Bessel functions [281]:
0

(1) _ 21 ix cosh u
HO (x) = - 0 € du,

2) 21 -ix cosh u
HO (){) F e

i

du {(5.2)
0

and JO(x) = [Hél)(x) + Héz)(x)].

)| =

The last identity is analogous to the breakdown of trigonometric functions
into exponentials, as pointed out by Sommerfeld [47]. In particular, one

may write

COSX = %-[elx + e_lx], a form directly analegous to the

expression for Jo(x) in eq. (5.2). The functions Jo(x) and cosx may be

considered standing waves, while the exponential forms and the Hankel

él) and Héz)

may be incoming or outgoing (radiating) depending on the form taken for

functions H represent traveling waves. The radiating waves

the time dependence. The time dependence is governed by the kernel of

the Fourier transform in time. We see that the kernel for the function

wt

f(t) in eq. (3.90) is e Therefore, outgoing waves must have as nega-

tive exponent:; e.g., they must be of the form e **. One sees from
eq. (5.2) that the integral form for Héz) is, in effect, a superposition

of outgoing waves. For this reason we wish to express eq. (5.1) in

@)

terms of the Hankel function H0

Since the argument of the Bessel



(

function is §r, one sees that the choice of “U

tion in the r-direction. The variable of integration ¢ is then a

]
“)[gr) represents radia-

wavenumber, so the integration is over the wavenumber domain.

One also notes the following identity:
M, . @
”0 (-x) = “0 (x), (5.3)

which can be verified by inspection from the integral forms for the
tiankel functions in eq. (5.2). We substitute the last identity in

eq. (5.2) into eq. (4.40) to obtain two terms:

“sinh a (h.-z.) [.
Glr,z,2' ) = L) ﬁ .02 [% (cz)] ul? @ryzar +

0

“sinh a.(h.-z.) [y
ﬂ S [% (cz)] ult (zoyede (5.4)

The first integral is in the desired form. We change variables in the

second as follows:

gt = -g
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and dz' = -df, where we note that aotc) = au(c'}, etc. The identity

(5.3) is applied to the second integral. After elementary manipulation,

we write the integral form for the Green's function as:

G(r,z,z",w} =

“sinh a (hy-2.) 9
l(w) 2.0 > [% (c“)] n{? @eycdg. (5.5)
~m 4]

This form will be more convenient for evaluation using complex variable
techniques and contour integration.

Equation (5.5) is now expressed in nondimensional form, We recall
that r is a wavenumber, so it is natural to define a nondimensional
variable of integration x in terms of the wavenumber ko in the liquid

X = i;/k0

and _ (5.6)
dx = dc/ko



In addition, one may introduce the following nondimensional parameters:

0= ka/k0
and Yr =_k0r.

Here o and B are complex quantities if damping is present in the sub-

bottom. The nondimensional parameter Yp is a ratio of two length
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scales. This may be seen from the relation between the wavelength Ay in

the liquid and the corresponding wavenumber:

27c
= » (5.7a)

where w is the frequency. If one applies this to the expression for Yr

in eq. (5.7), we have

Yo 55 a ratio of two length scales.

Referring to Table 1 in Chapter I, we see that for marine sediments in

shallow water

Re{a} < 1
and Re{R} » 1.
The quantities ags A and aB may be written
- 2_ 144
3, = ko(x -1)
1
a, = k(o) (5.7b)
_ 2 2.5
and aB = kO(x -R7)

We express eq. (5.5) in nondlmen51onal form u51ng eqs. (5.6) and (5.7):

G(‘Yr!z‘>)z< ,m) =

kOH(m) 51nh[1\0(h0 zZ )(x ~1) ] [ (x )] {(Z)CY Y xdx
r >

4m o (x -l} D(XZ) 0

(5.8}



where

Ny = w1 ex2-H? - 4(xz-az)%(xz-sz)%xz]cosh[koz<(xz—l}%] .
- 8t o?) st [k gz (2137
and
D) = me-1 [xP-8D)7 - 4(P-00) FxP-87) A Teosh Tk g (xP-1) %]
. 84[xzkaz)%sinh[koho[xz—l)%].

We wish to evaluate the integral (5.8) using complex variable tech-
mques. One does this by inteprating around a closed curve in the complcx
z = x + 1y (5.9)
plane, where the contour includes the real axis and the singularities of
the integrand of (5.8) in the z-plane are taken into account. Note that
the complex variable z is not related to the coordinate z in Figure 2.

In the following, the symbols z_ and z  will be used for z and z' repre-

<

senting coordinates to eliminate confusion.

B. Integration in the Complex Plane

The complex variable z = x + iy is introduced for x in the
integrand of ecq. (5.8). We write the contour integral | corresponding

to eq. (5.8) as:
| 2
sinh k,(h.,-z 3{(z"-1)°% r,,.2
- 0 2 >1 [h(zz) Héz)(yrz)zdz, where (5.10)
(z°-1)% D(z")

N[zz) and D(zz) are of the same form as in eq. (5.8). We must now
choose an appropriate contour so that part of it lies along the real
axis. In addition, the singularities of eq. (5.10) lying within the
contour must be analyzed. Two kinds of singularities occur: poles and
branch points. The branch point singularities occur due to the presence

of quantities taken to the 1/2 power and the Hankel function. These
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make the integrand of eq. (5.10) multiple-valued unless one draws cuts
from the branch points to points on the contour where the integrand
vanishes. Une may then specify a branch (for each sinpularity) making
the intcgrand single-valucd provided the contour does not cross a
branch cut,

Poles occur where thie integrand becomes infinite; i.e. when

D(zz} = 0, (5.11)
Equations (5.11) is the frequency cquation for the system. That is,
solutions (roots} of this equation represcnt nondimensional wavenumbers,
or spatial frequencies. We note that poles apparently occur at z = |
due to the (22—1)!/2 factor in the denominator of eq. (5.10). These are
not true poles due to the sinh term in the numerator. If one expands
the sinh term in a power series onc may write 7

2 L
. IR o [Rglhgmz ) (271
sinh kn(ho—z>}(z -1) = ko(hn—z>](z -1)° + e+ L

3t

A (22-1]!E factor may be pulled out of the cxpansion cancelling out the
corresponding factor in the denominator.

Schermann [42] investigated the roots of c¢q. (5.11) for the casc of
no damping (a2 and B real, in our notation). lle¢ found a finite number
of real roots lying in the region

¢ < x < 1.

In addition, he found an infinite number of complex roots., Ewing, et al
[7]. in a discussion of Schermann's results, conclude that the complex
roots do not lie in the permissible Riemann shect. The location of the
roots is discussed in detail in Appendix B. The effect of small damp-
ing is to pull the roots slightly off the recal axis into the fourth quad-

rant for positive roots and into the second quadrant for negative ones.



At this point we determine the Riemann sheet for the integrand of
eq. (5.10). We specify one branch for each of the factors introducing
. . o , . . (2)
branch point singularitics. We start with the llankel function “0 LYTZ).

This gives us a logarithmic sinpularity at = = 0. We drav a cut from

2]

= 0 down the negative imapinary axis, and specity
/2 <{arg u$ oy 23} < 2,

Six additional branch points occur when

&g = 0,

a = (

o
and a, = 0,

%
From eq. (5.7b) onc sees that the corresponding branch peints are at

z = ti,

z = *n
and z = [,
We draw branch cuts as shown in Figure 3. Recalling the expression for
ag, au and aB from eq. (5.7b), we write in the complex plane:

- 2 1y
a, = ko(z -1)°,
2 2k
a = kg(z"- %) (5.12}
2 2.5 . -

and ag = ko(z -p°)} . Appropriate branches of these quantities are

taken by setting

-n/2 Arg{[zz—l]%} <n/2,

[3FaN

-1f2 Arg{(zz—az)%}<<n/2

A

> 1
and -nf2 Arg{(:“£€)ﬁ} < T2

bA

This is equivalent to restricting the real part of 3, @, and ag to be
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positive. The choice of these branches is consistent with taking the

positive square root for
2,20 .
aO(; —kO] in eq. (4.8).

llaving located the singularities of the integrand, we now select
an appropriate contour. Part of the contour must lie on the real axis,
as this part represents the Green's function eq. (5.8) . We may close
the contour with infinite semicircles in the upper or lower halfplanes
provided the path loops around the branch cuts. To decide which semi-
circle to take, we recall from eq. (5.2) the integral form for the

tlankel function appearing in eq. {5.10)

. p -y.z cosh u
{2) _ 21 by dn. (5.2}
Hy v,z = 5 ﬂje

We express z along the semicircle as

z = Re”” = R(cosB + i sing) (5.13)
where R is a positive real number (R + =)}, and 8 is the argument of z
measured positive counterclockwise from the positive real axis, Sub-

stituting eq. (5.13) into {5.2) gives

> -iy R cos® cosh u __Rsind cosh u
. T Yr
21 e e du,
0

Héz)(er) =

The first exponential term is oscillatory, where outgoing waves (with
respect to r) correspond to points in the first and fourth quadrants,
This is the reason for taking the branch cuts as shown in Figure 3.
That is, the cuts represent a continuous spectrum of outgoing radiation
in the lateral (r) direction. The second exponential vanishes for

large R in the lower halfplane due to the sin® term. One then must

close the contour in the lower halfplance, where the integrand vanishes
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exponentially along the arc for R > ., This arc will not contribute to
the contour integral.

We may readily verify that the remainder of the integrand in
eq. (5.10) vanishes along the lower infinite semicircle. The hyperbolic
functions degenerate to exponentials for R+ «, One then writes

. I T »
sinh[ko(ho—z>)(zz-1)7] [N(zz]] . ko(2y-2) (2°-1)

{32—1}]ﬁ D(zz) [22—1JIé

as R > =, This clearly vanishes along the semicircle. We now draw
the contour as shown in Figure 4. The path of integration must loop
around the branch cuts to avoid crossing them. We take the loops very
close to the cuts to simplify the evaluation of the integral. The
portion of the path along the real axis is deformed slightly to avoid
the singularities at z = 0 and z = 1. A slight deformation of the ori-
ginal path along the real axis is permissible as long as there are no
poles lying between the original and the deformed path. We denote the
loop paths around the cuts as FO’ Pa’ Fl and FB for the branch points
at z = 0, a, 1 and £, respectively.

Having determined the location of the singularities and the contour,

we may apply the residue theorem [ 3] to eq. (5.10) giving

1

. 2 L
sinh[k.th.,-z_)(z"-1)"] 2
I = 2 2 [N(ZZJ] P (y_2)zdz =
(z°-1)° D(z°)
= - _"ﬂﬂ;_.g( z_,z_,w) + I+ 1 + I, + 1 =
ROH(m) YprossZeo 0 o 1 B
= 2mij (Residues), (5.14)
2 1
where sinh[k,(hy-z,) (z -1)7%] N(Z2) L(2)
IO’C‘.,].’B = 2 li 2 HU {YrZ)ZdZ’
r (z7-1) D{z")

0,¢,1,8
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and the Green's function term arises from eq. (5.8). FEquation (5.14)

1s a statement that the contour integral (consisting of the sum of the
sepments along the real axis and around cach branch cut) is equal to the
sum of its residues. We wish to find the Green's function, so after re-

arranging eq. (5.14) we find

kol (@)

b [I.+ 1 + I+ I - 2mi}(Residues)].

Clvp,2,,20) = 0 o 1 P

(5.14a)
Taking the contour integration replaces the improper integral along the
real line [eq. (5.8)] with a sum of four loop integrals and residue
terms. This may not appear to be much of a simplification, but the fol-
lowing discussion will show that the loop integrals, which are non-
singular if the paths do not cross a pole, may be approximated by
asymptotic expansions. In addition, the residue terms are shown to be
an algebraic form in the frequency domain.

We start by developing the residue term in eq. (5.14a). fLet us

denote the ith pole as Z:s where from the frequency equation
2
D(zi) = 0. (5.11)

From the residue theorem [3 ], one writes the ith residue term by
multiplying the integrand of eq. (5.10) by (Z_Zi) and taking a limit

as z > z,, oOr a1
. . _ = _ -2
Lim 51nh[1\0(hU z))(z 1) “]

Z*Z

2
N(z%) Héz)(er)z

(Residue)i = {z—zi)

1

i (zz-l)'2 D(zz)
(5.15)

The expression (5.15) i8 an indeterminate form in the limit due to the

[z—zj) factor in the numerator and the U(zz) term [which vanishes for

z =z, from eq. (5.11)] in the denominator. We apply L'Hospital's ruile,

giving
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sinh[ko(ho—z>3(22-ljg] N(Zz)

7 “(2)
(2°-1)° &bz

0 (YrZ]Z

(Residue}i =
7=z,

i
(5.15a}
The residue terms are then simply algebraic forms in the frequency domain.
The discussion in Appendix B shows that the number of residue terms is
large for the problem considered because of the high frequencies used.

The physical nature of the residue terms can be determined readily

by recalling that the poles lie in the range

where z. = x, + iv,
1 1 1

and Y3 is small and negative. The hyperbolic functions may be written
as trigonometric functions if damping is disregarded. For example, the

sinh term in eq. (5.15a) may be written approximately
iy 2 ) FR— . (h 2.7
blnh[ko(ho—a>)(xi—l) 1 =1 51n{k0( 0—2))(1-xiJ ] ) (5.16)

Similar expressions appear for the N(zz} and D(zz) ternms.

Equation (5.16) indicates that the residue terms represent standing waves
in the vertical coordinate z. The residue terms radiate laterally (in
the r-direction) due to the presence of the Hankel function in eq. (5.15a).
For large Y, % (far-field), the Hankel function may be written in asymp-
totic form [48]:

L. -iy_z.
2Z ]2 RAVEINE o (5.17)
1

(2) ~
D e
r
for ]yrzi] >> 1,
Recalling that Y, = knr, one sees that the residue term is a wave spread-

wls . . :
ing with a r * dependence laterally, corresponding to a two-dimensional

wave. The exponential term may be written



]
-

-iy_z. -1k, rx. 4k TV,
e rl.e 01 e 0 L (5.17a)

The last exponential term intreduces a decay or attenuation since Yy is
negative. The radiative term represents waves propagating laterally at

speeds varying between ¢, and € (for no damping in the subbottom) due

0
o the location of the poles. One may see this by defining a phase vel-

ocity for the ith mode as follows:

€ = So/%; .

We may then write the radiative factor in eq. (5.17a) as
_jur
-ik, rx. ¢
i

0 i
e = e ,

which shows that the wave is propagating in the r-direction at a speed

c,.
1

To summarize, the residue terms represent a modal or waveguide type

1
-5

of propagation laterally with a r ° spreading law. The damping in the
subbottom introduces wave attenuation laterally. Each term represents
a wave propagating with a distinct phase velocity ¢ corresponding to a

pole z

C. Integration Around the Branch Cuts.

We wish to develop expressions for the line integrals IO‘ Iu’

I, and I8 appearing in eq. (5.14}. The paths FO’Fa’Fl and FB are indi-

cated in Figure 4. We initiate the discussion with the integral for the
branch point at z = 0.

1.) Line Integral for Path T one writes the integral from

0t
eq. (5.14) as

2
sinh[k,(th,.-z.)(z-1) "] 2

I, = L e M) w2 iy )24z, (5.18)
(z°-1)* D(z")



where the path is indicated below,

o[’“\ X
N g \ /C
s ‘h T,
S Y
A ‘ b

The variable s represents the distance from the branch peint. The path
is essentially two straight lines along the segwents AB and CD, The
circular loop around z = 0 gives no contribution, since the point z = 0
is not a pole. The argument of the complex variable z increases by 2w
when passing from the segment CD to AB. We write for the complex
variable along CD the following

z = -is,
and along AB we write

z = -iset?" (5.19)
We note that 22 = -52 on both sides of the cut, so the integrand of
eq. (5.18) does not change when passing along FU from AB to CD. Inte-
grating along s gives us symbolically

IO = ( )ds + { Jds
AR cb

0 [=a]
:I( )ds +f0( )cls=0_ (5.20)

The contributions from AB and CD then cancel, resulting in I0 = 0,
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2.) Path Flz he path Tl for the branch point at z = 1 is shown
below,
v
! X

0 )
\ \T/

B C

S
I

We again have two line integrals AB and CD. The circular portion gives
no contribution, as z = 1 is not a pele. One changes variables along

the two segments of the path, writing for the portion CD:

z = 1l-is
and along AB: (5.21)
7z = 1-ise°",

1
Applying the change in variables gives for the quantity (22—-1)J5 the
following:

(22-1)% = £(s) = is%(s+2i)

on CD and (5.22)

1
]

~-f(s) = -is

2 L =
(z°-1)* (s+21) ",
P tq : % . 2 .5
where the positive square root is taken on s*. The quantity (z°-1)
then changes sign from one side of the cut to the other. This results

in a possible discontinuity in the integrand. One writes the integral

I1 from eq. (5.14) after introducing the function f(s) from eq. (5.22)
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and changine variables
Ll

I sinh[-kq(h-2,)F(s)] Nis,-f(s)] ii(”)[ 1- . 1- ds +
1 ~f(s) 5T " Fs)] Y, (1-i5)]1(1-18) (i)

mSlnh[k (h -7 )f‘(s)]
§ g(s? - EE ;EQH H(z"[Yr(l—is)](1—i.s)(—i)ds.

o (5.23)

From eq. (5.8) one sees that N{s,f{s)] and D[s,f(s)] are even in

1,
F(s) = (22—1]2. The integrands in eq. (5.23) are then identical by
inspection. The two integrals cancel, giving

I1 = 0. (5.23a)

The results for the two branch points z = 0 and z = 1 indicate that
these are not true singularities. We now turn to the singularity at

Z = O,

3.) Path Fa: The path of integration is sketched as follows:

One changes variables similar to eq. (5.21}). On CD we write
z = 0-is

and on AB  ion (5.24)
a-ise .

™
|
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. 2 2.4 . . .
The quantity (z°-a”)” is discontinuous across the cut, so we write from

eq. (5.24) for CD:

2 2 Ié . !'i . 1;
(z7-0") % = g(s) = is"(2iax + s)°

and on AB (5.25)

5 L 1
(z"—az}2 -g(s) = -isjfzia + 5)°,

Applying eqs. (5.24) and (5.25) to the cxpression for Ia gives, after

combining the contributions along AB and CD:

© 2 ..\%
sinh[k (h -z )(z°-1)7] \
. L9 1) (v _2) [‘“3(5” ~”['g(5”] (a-15) (-i)ds,

« (zz_l)ﬁ D g(s) Dl-g(s)]

0
where 2z = (g-is).

The expression (zz-az]li appears only in the N(zz) and D(zz) functions.
Equation (5.26) shows that only the discontinuity in the integrand due
to the change of sign of g(s) across the cut contributes to the integral.
The quantity in brackets appearing in eq. (5.26) is odd in g(s), so it

may be written in the following form:

E{ggzg% - ﬁ%1§§23§] = g(s) G(s), (5.26a)

where G(s) is even in g(s), The expression (5.26) for IOl is well-
behaved, since the path does not interscct any poles. This may be
integrated numerically, but further direct analysis cannot be applied
without introducing approximations. We discuss a high-frequency far-
field approximation for [a in the following section. First we complete
the branch cut integral discussion by computing IB'
4.) Path Tﬁ: We sketch the path FB as follows:

y

—

§




The change of variables is similar in form to eq.

On CD: B

Z

On AB: R

Z

The discontinuity in the integrand now arise from the (22—8

- is,

. 12m
- ise

(5.24).

2]%

in the N(zz) and D(zz) functions. We write along CD:

1,
(z%-8%)"

and on AB

(22-p%y"

The integral IB is

oo

ot
1]

sinh [k, (hy-2,) (2°-1) %]

h(s) isl’z(zi&s)gi

]

-h{s) = —is%(218+s)%.

similar in form to eq. (5.28

i

where z

(B-is).

The quantity in brackets is written, similar to eq.

N[h(s)]

T
221y

N[-h(s)]

DMh{s)T ~

where H(s} is even

To summarize, two of the branch cut integrals I0 and I

The other two integrals are given in eqgs.

eqs.

approximation.

D[—h(s)]] = h{s)H(s),

in h(s).

(5.26

and IB in an asymptotic series.

D.
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(5.27)

factor

(5.28)

(2) N . ,
HO (er)[D[h(s)] - D[—h(S)]] [B-JS)(—l)dS,

)
[h(s)] NIl-h(s)]
(5.29)
(5.26a), as
(5.29a)
are zero.

1
) and (5.29).

Approximate Evaluation of the Branch Cut Integrals

In the expression

vzl >>

for Ia {eq. (5.26)]

L,

Kohg << Yy

and

, we set

To analy:ze
(5.26) and (5.29) further, we intrcduce a high-frequency far-field

This allows us to expand the branch line integrals Ia

(5.30)
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Equation (5.30) implies that

I'Yrotl »>> 1

and z, << T,
since Y, = kgr. These assumptions definc a radiation zone in the r-
direction. The first relation (5.30) allows us to express the Hankel
function as follows:
-Y s

. -ik r T
2 .k elﬂ/4 -1 o,

(2) = \ e , (5.31)
Ho “(vpz) = (%gg;) (a-is) " e

where we have used the asymptotic expression used earlier in eq. (5.17)}

#©r the Hankel function. The last three expressions in eq. (5.30)

ensure that the integrand decays rapidly for increasing s due to the
_.'YS

exponential term e T in eq. (5.31).

We apply eqs. (5.31) and (5.26a) to eq. (5.26) to yield

a [2.5)
. . 2
Lo -ik v} sinhlk.(h.-z ) (z"-1)"*] L L1 ~Y. 8
- 2y T 0-0 >~ (0-is)?(2i+s) s G (s)e | ds,
Tk T 2 T
0 o (z7~1)
where z = (o-is). (5.32)
The integrand may be expanded about s = 0 as follows:
1
sinh[ko(hovz>)(22-1)]i 5 5 )
T (a-is)*{2io+s)* G(s) = a, + a.5 + a5 +
1) o "% 2
2 (5.33)

This expansion is uniformly convergent inside a circle of radius p in

the z-plane centered at z = o, The radius p is given as the distance

from z = & to the nearest singularity of the integrand of eq. (5.32).
Ignoring a remainder term, one may write Ia in expanded form using

eq. (5.33) as
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Recalling that ki = w/cu, we see that the [a contribution to the Green's
function is a damped wave propagating in the r-direction with speed ¢
We note that the contribution of IDt to the Green's function [eq. (5.14a)]
is small relative to the residue terms for knr'large due to the spreading
factor (kor)"z. {Recall that the residue terms spread as cylindrical
waves with an 1 ° dependence. )

The expression for IB given in eq. (5.29) is treated in a similar

manner. The Hankel function is written in 1ts asymptotic form for

z = {B-1s) as follows:

. -1k -Y_5
2 2 ! 4, . -4 7t
62 = 2% M i) e P e T (5. 38)
0
We expand part of the integrand in the form
1.
sinh [k (hy-2,) (z°~1) 7] . 5 ,
- (R-is)?(2iB+s)“H(s) = b, + b.s + b,s" + ...
(z2-1° 0 1 2
(5.39)

using eqs. (5.2%9a) and (5.38). The integral IB is then expressed approx-
imately as a descending power series in (kor) similar to eq. (5.37):

P -1k, 1 ® an(n+3/2)

)% eiﬂ/4 o B
L nf0 Gor D)

1

g = ¢ (5.40)

This result is similar in form to the expansion for the Iy integral.
The first term varies as (kor)_z. The attenuation and speed of the

wave have the same form. We write for kB:

I . . :
where kB is real and negative. One sees that the exponential term may

be written R 1
-ik,r -ik,r Kk, r
8 B R

e = e e , (5.41)
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where the first factor on the right-hand side governs the propagation

and the second the attenuation of the wave. Since once may write

1

we see that the wave propagates at the speed c,, the shear-wave

B El

velocity of the subbottom.

L. The Approximate Green's Function

We write the simplified Green's function from eq. (5.14a) by
recalling that IO and I, are zero:

k H(w)
0 . .
G(Yr,z>,z<,w) = [Iu + IB - 2m1 I(Residues)]. (5.42})

The residue terms may be written for large |eri| in the following form

using eqs. (5.15a) and (5.17)

(TS -ik,rz, 1,
{Residue)i = (%%3 01”/4 o 0 L(korzi] : iy (5.42:1)
where ’ I - B P
sinh ko(h0~z Y(z°-1)7 (z°-1)N({z7)z
S T d 3
i 2 .\
(*-1)? & 109 oz,

The branch line integrals are written from egs. (5.37) and (5.40) as

o sk r [aT(3/2) a,0(5/2) ]
r ™ o T (5.37)
“© T (k1) (k,,T)
L 0 Q -
and ' [~ =
. Sik,r | b (3/2) b T(5/2)
I {%35 Jm/4, B0 — 1 e | (5.40)
| (kgr) (ko) |

One may write the Green's function in the following form by combining

eqs. (5.42a), (5.37) and (5.40} into eq. (5.42):



a2

KHw) 4 N . -ik,.rzo
G{Yr,z>,z<,w) = ‘QZE'“ (%J‘ em/4 2mi & Eknr: } e . cl} +
: i=l -

-ik_r ( a,[(3/2)  a T (5/2) i ikor{ bl (3/2) b T(5/2)
+ e * - .. + B + +

(k) k)’ (k,r)

L 0 A 0 0

{(5.43)

This result is the approximate Green's function for the high-frequency
case in the far field: i.e., for horizontal distances r much larger than
the other length scales in the field [sce egs. (5.17) and (5.30}].

The Green's function in the time domain may be obtained by Fourier
synthesis using eq. (3.38). The synthesis is complicated, as each of
the terms in eg. (5.43) is frequency-dependent. We note that the in-
clusion of damping makes the coefficients

¢.,i=1,2, ..., N

13

frequency-dcpendent, as are the wavenumbers ka and kg' In addition, we
note that the poles.zi appearing in the residue term are frequency-
dependent whether damping is included or not [sec Appendix Bl .

Pekeris analyzed the time-domain behavior of thc residue terms
for the two liquid layer problem [40]. ![iis analysis is a special case
of this one, but the general features of his result apply here as well,
He toock a pulse shape in time of the form

et s

h(t) =
0 t <0,

wherc 0 is a positive real constant. Pekeris performed the Fourier

synthesis for this pulse shape using Kelvin's method of stationary



phase. To the first approximation, the stationary phase treatment gives

m1r_1 dependence. Pekeris also took the next higher approximation valid
. . s . -5/6

near the stationary value of group velocity. This resulted in an r

dependence in the time domain. Ile termed this type of wave the Airy

phase.

Other types of time dependence will give similar results. In
particular, a Gaussian pulse modulated by a frequency W is representa-

tive of the time dependence used in acoustic sounding. We may write

h{t) in the following form:

S (/02 iut
h{t) = ¢ e

» (5.44)
where ) is a parameter related to the pulse length. The Fourier trans-
form H(w) of eq. (5.44) is;
A lw-wg) ]2

H{w) = ).(TI]lé e [ 2 . (5.44a)
One may apply this pulse spectrum to eq. (5.43) and apply the stationary
phase method to obtain the Green's function in the time domain in a
manner similar to Pekeris' treatment.

Further development of the residue terms is beyond the scope of
this investigation. The Green's function appearing in eq. (5.43) is
too complex to be used for the intended application. In addition, the
assumptions used to obtain this expression place us in a far field,
implying that the acoustic receiver must be separated horizontally
many water depths from the source. This is inconvenient for experi-
mental work (c.g., acoustic sounding).

We terminate the finite water depth case developed here by noting

that the response consists of a large finite number N of modes corres-

ponding to terms in a residue series. These modes may interfere



constructively due to the presence of large parameters in the Fourier
synthesis. In addition, contributions to the response are given by
the branch cut integrals. These terms die out rapidly due to their
representation as a descending power series in r, the leading term

being proportional to T



VI. GREEN'S FUNCTION FOR THE SEMIT-INFINITE LIQUID
OVERLYING A HOMOGENEOUS VISCOELASTIC HALFSPACE

A. Manipulation of Integral Form

We develop an expression for the Green's function for a field con-
sisting of a liquid halfspace overlying a semi-infinite viscoelastic solid,
The Fourier-Bessel transformed form of the Green's function was given as a
special case of the result for the n-layered solid halfspace. The number n
of layers in the solid was taken as 1 and the liquid layer depth hO was taken

to infinity. We write the simplified result from eq. (4.44) as:

2
H(w) e'ao(z>’2<) . e'ao("‘>*z<) N, (g )_J

_G_(EJZ »Z ,U.!l) = TR (4'44J
>« 4ﬂao DI(CZJ
where
- 9 2 -
2 2 2 4
Nl(g )=m ag (-%~ - 1" - m%_ aaaB - aL
L x k >
B g
- 2 2 -
2 2 2 4
Dl{g l =m a, C*Eg - 1" - —%—-—-auaB + aa
B B
and m = ol/oo. We have set Ay = a3, etc. for simplicity. The first term

in eq. (4.44} is the direct wave; that is, the wave traveling directly from
source to receiver. This is evident, as this term is identical to the
Green's function for the unbounded fluid [eq. (4.16)). The second term is
evidently the contribution due to the presence of the viscoelastic half-
space. The Green's function (4.44) may be written in the form

E=6,+6 (6.1)

3

where G _,the direct wave, is given by eq. (4.16), and G

1 the contribution

due to the solid halfspace, is written as

. 2
_HW) "0—30(2>+z<) 1‘11(1_: ) ]

=1 4ﬂa0 Dl(Cz)
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After noting that
¢ 2 2,
N 2 = b (2% - 28

from eq. (4.44), we decompose G, into two terms as follows:

1

Gy =G+ 8, (6.2)

where —ao[z>+z<)
Hlw) e
EI - 4w a
0

and

o o -HW) e'ao[z>*z<) 2

= 2ra 2

0 b &)

We note that EI is in the same form as eq. (4.16} for the Green's

function in the unbounded fluid.

To perform the inverse transform, we recall eq. (4.38):

[ +]

Glr,z,,z_0) = | G(Z,z,,2,,0)d,(5r)Cde.
0

Performing the inverse transformation of G gives, from eg. (4.18):

o -ikOR
- _ H{w) e
GOO - Em Jo([_or} Qdi; - 4“. R 3 (4' 18)
Q
1,
where R = {(z, - z<)2 + rz]z.

One may write the Green's function G. in a form similar to eq. (4.18).

I
From eqs., {(6.2) nd (4.38) we write
" e—ao{z>+z<) ) e—lkORI
Op = Tw |, e Joendndt = T T , (6.3)
0 1
2 2.5 .
where RI = [(z> + z() + r]°. The term GI can be interpreted as

an lmage source term using an argument similar to Sommerfeld's [49].

The image source is sketched in Figure 5.
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Geometry of the Liquid-Subbottom Field: Infinite Liquid Depth
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The Green's function can be writtcen as the sum of three tervms:
the direct wave, the image source term and a residual term. From

eqs. {6.1), (6.2), (1.181 and (6.3) we write
- —ikOR —lkORI

. ~ Hw) |e e o
b{r,z),z{,m) = T L R + RI G'(r,z

W), (6.4)

>’Z<’

where the residual term G' is

o - “H(w) e~a0{2>+z<) a
2T 5 JO(CP)Cdé-

o 0 D, (z%)

Having obtained expressions for the direct and image source terms,
we now direct attention to the integral cxpression for the residual
term G' given in eq. (6.4). This intepral is in the same form as the
Green's function for the finite liquid layer [eq. (5.1)]. We may
manipulate the integral form for G' similar to the development in

Chapter V. Using egs. (5.2), we write for the residual term:

; -ag(z,*z,) a
w) = '2#“) - a Ot2 “éz](Cr)cdc- (6.5)
o 0 D, (g7)

G'(r,z

>k

This result is expressed in nondimensional form using eqs. (5.6) and
(5.7). 1In addition, a nondimensional ratio of length scales Y, = ko(z>+z<}
is used:

G YY) = 1
. ) oo 2 s
H(w)k, -(x7-1y,

2 2.4
_ ® e 222 WPy xax, (6.6)
4m (x*-1)° D, (x7)
where 2 Fad 2t odeady lagd) 2 2
D (x7) = m(x -1)2[({2& Lpyf oA xa : X J £ (xT-a)E,
B

B
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L. Contour Integration

The integral (6.6) is improper due to the presence of singu-
larities on the x-axis. We choose to cvaluate eq. (6.6) using contour
integration in the complex (z = x+iy) plane, as was done in the preceding

chapter. We write a contour integral from eq. (6.6) as follows:

7 L
- (271,

2 2%
I' = e _. (z-a )’ H(EJ{Y z)zdz (6.7)
(zz-l]l‘a' D, (=) v

The contour of integration must be determined. The branch point singu-
larities of the integrand in eq. (6.7) are identical to those in the

preceding chapter. The poles of eq. (6.7) are given by
2
D (z7) = 0 (6.8)

Solutions to eq. (6.8) were obtained numerically by Strick and Gins-
barg for the elastic solid; i.e., for a and R rcal and positive [52].
They found one real root of eq. (6.8) occurring at a wavenumber xp
larger than {5, or

o <1<8 < xp. (6.8a)

The root X of eq. (6.8) represents a Stoneley wave contribution [8].
The points z = *1 are not poles. This can be seen from the Green's
function given in cg. (4.42) before decomposition into the sum of two
terms. Solutions to the frequency equation (6.8) with damping are dis-
cussed in Appendix C. The result for small damping is that the pole X,
is pulled off the real axis slightly into the fourth quadrant. The
complex pole zp may be written:

- v iy, 6. 8b
p xp lyp ( )

where yp is real and negative,
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The singularities of cq. (6.7) then arc similar to those in the
previous chapter, except that only one pole occurs farther out the x-
axis [see Figure 6}. The same contour may e used for the present
problem because of the presence of the llankel function. The integrand
of eq. (6.7) vanishes along the arc of a semicircle of large radius R
in the lower halfplane, as can be scen by inspection after recalling
that the Lranches for the quantities

1 1
2% - o2)E, A1,

and (22-82)1/2 are taken so that the real parts are positive [from
eq. (5.12)1.

The contour of intepration is shown in Figure 6. The contour is
identical to the one in the previous chapter cxcept for the location
of the poles. The branch point singularity at z=0 due to the Hankel
function is ignored as it does not contribute to the integral.

llaving selected a contour and knowing the location of the singu-

larities, wc apply the residue theorem to €q. (6.7), giving

4
' A L ol i} . .
I kuu(w) G (YTJYZ,N) + Iq + I1 + IB 2mi Residue, (6.9)
where A
-5, 5, o
- E o)
I - fe —E2) Py )z
“1E ooy 0T
o,1,8 1

The expressions I, Il’ IB represent line integrals around the branch
cuts for z = a, 1 and B. Each line integral path is designated by
Fa,],B, respectively.

We may solve for the Green's function G' from eq. (6.9), giving
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kol (w)
t T re— . ' -
G (Yr,yz,w) = e [Fl + Ia + IB 2ﬂ1(Re51duei] _ (6.10)
The Green's function is then the sum of contributions from loops
around three branch cuts and a residue term. One may write the residue

term as follows:

{Residue) = Héz){yrzp)cp, (6.11)
1
where —(22—1)é .
4 2 2 i
c = - |8 (z7-a P ;
P ﬂ__ 2 2_ 3 _
a1z [Dl{z 1] (z7-1) z zp.

L'Hospital's rule has been applied to obtain the expression for Cp’ as
in Chapter V for the residues. The residue term is a wave propagating
laterally due to the presence of the Hankel function. We may obtain

further insight into this term by writing the Hankel function in its

asymptotic form for large [erpl' We have
. -iy_z
(2) - 2 bk oim/4 T'D
Ho " Orpz,) = Gyz ) e e . (6.12)
rp
Onc may apply eq. (6.8b) to the exponential term, giving
-1y z -ik,rx_ k,ry
e TP_o 0P 0P (6.12a)

The first term governs the radiative behavior of the residue term and
the second is an attenuation. One may define a phase velocity Cp for
the residue term as follows:

W
c_ = (6.12b)
P koxp

We write the radiative term as:

. wr
—1k0rx -
e Poe P . (6.12c)

L™
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Recalling that the time dependence for the wave given by the kernel of

eg. (3.9h) s

it
c

i)

one may combine this with eq. (6.12¢) to obtain

iw{t- %—) -1 %-(r-c t)
e p =e p . (6.12d)

This result represents a wave propagating in the r-direction with the
speed cp, vindicating <calling cp the phase velocity. Since the damping
is usually small, we may further discuss the behavior of the residue

term by taking

In this case, the exponential term in the Cp expression (6.11) reduces

re 2 % 2 Vi o
_(xp—l)“yz _ —(xp—l) k0(2>+:<) .

e c

This represents an attenuation in the vertical direction, as xp > 1,

1
%

1
In addition, the Hankel function (6.12) introduces a (erp} = {korxp) 2

dependence to the residue tern.

C. PBranch Line Integrals

We wish to evaluate Il’ Iu and IB given in eq. (6.9). The
procedure is the same as in Chapter V, although now the integrand is
less complicated algebraically. We evaluate first around the path Fl,
changing variables using eq. (5.21)., We write the quantity

(:&2—1)1/2 = f(s) on the right-hand side of the cut and change its

sign on the left-hand side as in eq. (5.22)}. We combine the two

segments of the path Fl into one integral in s as follows:
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‘f:(S}YZ F(S}YZ H(z) [.Y (1 15]]
1, =) % - (1-is)(-i)ds, (6.13)
17 | DJEET T 0 EG)] 38 r

where we write D1 from eq. (6.6) in the form

Dl[f(s)] = mf{s)P(s) + am(S)
and

2 2,2 2% 2 2%
P(s) = [fg% ) 1)2 427 (2" -n 1 (z"-B7)
B 8 z=1-is"
One may manipulate eq. (6.13) into the more convenient form
= F,6) ) . .

I1 = 0 [f(s) Fl(s) + ) ] “G Yr(l-ls) (1-is)(-1)ds, {(6.14)

where
2mP sinh(fy Ya
F.(s) =
1 f[a2*m2f2P2]
o

and 2a2 cosh(fY )

F,(s) =

p) [a —m2f2P2]

We note that both Fl(s) and Fz(s) are even in f(s).

15 exact. In the next section,

The integral (6.14)

the integral will be developed in an

asymptotic series by applying some assumptions and approximations.

Next, we turn our attention to the integral Ia
using eq. (5.24}. Recall from eq. {5.25)
9
gi{s) = [zz—az)“ on the right-hand side of the cut.
for Ia is written using the same methodology:
-(z -lJ *\r
=] S 12 (y 2 (ais)g ()6 (5 (-1)ds,
o 2 g
o (z7-1)°
where

D, (g(s)] + D {-g(s}]

b,{g(s)1D,[-g(s) ]

Gl(s) =

and z = {a-is).

We change variables

The expression

{(6.15)
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One notes that Gl(s) is even in g{s). The expression (6.15) is also
exact. Approximate results will be developed later.
Finally, we evaluate IB. The change in variables is given by

cq. (5.27). We write from eq. (5.28)

(22_8213 = h(s) = 192(218+s]

on the right-hand side of the cut. The cxact expression for IB is
written
@® 2 L
-(z7-1)%
e 22 2k . (2) )
I, =] ————— (2" -a")*(B-1s)H "’ [y_(B-is}Jh(s)H (s)(-i)ds,
£ 2 s 0 T 1
o (z7-1)
(6.16)
where

D [-h(s)] - D lh(s)]
h(s) Hl(s) = and z = (B-is).
D [h{s}ID [-h(s)]

We see that Hl(s) is even in h(s). Equation (6.16) will be evaluated
approximately in the same manner as the results for Il and Iu'

The Green's function {6.10) has leen expressed (in the frequency
domain) as the sum of three definite integrals; eqs. (6.14), (6.15) and
(6.16), and an algebraic residue term, eq. (6.11). The physical behavior
o the residue term has been discussed. To gain insight into the definite
integrals associated with the branch cuts we must evaluate the integrals
approximately by introducing appropriate physical assumptions.

The most obvious assumption is to use the asymptotic expression for
the Hankel function appearing in all three integrals. This requires
that the magnitude of the parameters Yoo ayr and Byr be large. Taking
these as large is eesentially a high-frequency assumption, as we may

write for yr:



106

Recalling eg. (5.7a), we sce that Yo is o ratio of v to the wivelenpth
ot a sound wave in the liquid., We note that both a and B are of the

order unity, so one may say that the high-frequency assumption implies

Y. > 1,
oy [ >> 1 (6.17)
and By | >> 1.

We begin by applying the high-frequency assumption to eq. {6.14)

or Il' We write the asymptotic form for the Hankel function as follows:

Lol P RAPE
H[gz){Yr(l—i";)] = {%]2 er(l_is) 2 Clﬁ/4 e Tr o r . (6-18}

The expression for 1, becomes, for Y, >> 1

1

o8]

P -1y ~Y .S +i5
T, = (-?T;)12 vy © e”/4 e rJf e T (1-is) 2(vi}[f[s)Fl(s} +

T
0

F -
_2(5_}(15
£(s)
' (6.19)
1, L
Recalling that f(s) = is“(2i-s)’ enables us to write eq. (6.19) in the

form:

o [='v] _‘YS

Y3 L 1L L T lis)?
. Jr e T s7?(2i-s)?(1-is)? F (s)ds _Jf eIy (syds  (6.192)
0 0 s*(2i-s)°’ '

_’YS
One notes for Y, >> 1, both integrands decay rapidly due to the ¢ T

term provided Fl(s) and Fz(s) are properly behaved. We recall from

eq. (6.14) the expressions for F, and F2:

1
2mP sinh{f(s)y_] a (s}
Fy(s) = Rt Pv i
1 f(s)[au-m £7P7 ]
and (6.14)
E(s) - 2aacosh f{s]yz
2 - 2 2.2.2

[aa—m 7P



The sinh and cosh terms reduce to exponentials of the form

(R
7 © 2 for large 5. We must set

Y,<Y, (6.20)

for convergence of the integrals in eq. (6.1%a). This second assumption

may also be written as

which, from Figure 5, implies that the horizontal range must be larger

than the vertical range along the reflected path, or the angle of
incidence must be less than 45°%.  The convergence of the integrals in

eq. (6.19a) will improve as the ratio

¥
T T :
L increases. That is, as we approach a near-bottom

vz 7,
or low incidence condition. We may expand the integrands about s = 0
if eq. (6.15) holds. We write the appropriate expansions as follows:
L L 2
: 2 : kI —
(2i-s)~(1-is) }l(s] b0 + bls + bzs +

and (6.21)

1.
1-is}* _ 2
—L--—lr 52(5) =0yt CyS ¥ 0,8 +

(2i-s)7
The cxpansions have a finite radius of convergence in the complex plane
extending from the singularity z=1 to the nearest other singular point.
The integration from s=0 to s=» takes us outside this radius of conver-
gence, so term-by-term integration of eq. (6.19a) using the expansions
(6.21) will give a divergent series. One takes the first few terms
(at most) of the expansion, which will turn out to be an asymptotic
series in descending powers of the large parameter y_. The first few

terms usually give an accurate approximation to the integral. An upper
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bound to the remainder term due to the finite radius of convergence is
obtained by Van ler Waerden [50],
We formally introduce the expansions {6,21) into the integral

expressions giving:

L2 na T

I]. - (.n.) Yr e e X
s 1y "Y.3 = oy TYS

x Z an[ s(n+2)e T ds - z Cn‘f s(rl 2)e T ds . (6.22)
n=0 )} n={ 0

-

The definite integrals may be expressed as gamma functions from eq. (5.35).

We write
. ~iy
L 24k AT/4 T
Ly = @) e e x
o T Sy oy Tel2) 6.23)
n (n+2) n (n+1) T
n=0 Y n=0 Y,

Now we evaluate explicitly the first term in each series, obtaining a

zeroth approximation to II:

T iy
RCIL L E’o DGR E_(%/El] | 6.24)
Y r

T
We note the values for the gamma functions of half-order [29]:

re1/2) = =°

and L

r¢3/2)

Equation (6.24) reduces to

L -1y .
(=22 el™ g r[bo 1l _ ¢ 1—]_ (6.24a)

10
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From eq. (6.16), one writes

o1

by = 2° it F (0
(6.25)
_-_l/ - .]/
and ¢y = 2 S F,(0).
From eq. (6.14}, we evaluate Fl(O) and FZ(OJ as follows:
ZmP (0)y,
Fl(O) z —_—
a,(0)
(6.25a)
. N
P2(0) 2

Applying eqs. (6.25) to the expression for I10 glves

_1Y
L oLze [, imec0) (EENJ
10 Y, a, (0) "y

We note that for Yz/Yr small, this reduces (to the first order) to the

form 2e-1Yr 2e-1k0r
1,2 = = - . 6.26
10 Y, kor ( )

The ¢, term is Seen to be the predominant one. We designate the con-

0

tribution to the Green's function due to the 110 term as GiO’ and
apply eq. (6.26) to eq. (6.10):
H{w)k -ik,.r
0 REICIIPI 6.27)

T -
610 B an I10 4Tr

Equation (6.27), when combined with the expressions for G, and GI in

¢qs. (4.18) and (6.3) for Yz/yr small give an interesting result. On

expanding G_ and GI for Yz/Yr << 1, we have
-ik,.r
, H(w) e 0
o 4 T
(6.28)
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Combining eqs. (6.28)} with (6.27) gives

GiD + G+ GI =0 (6.29)

for Yz/yr << 1, or (z>+z<)/r << 1. This rcsuit shows that the source
and image term plus the contribution from I1 cancel to the first order
in Yzfyr. Fwing, et al. [9 ) discuss this phenomenon for two liquid
lavers. They interpret the effect as the cancclling of the direct wave
by the reflected wave at grazing incidence; i.e., the reflection coef-
ficient is -1. This is analogous to the limiting case of the Lloyd
mirror effect in optics. One should note that the cancellation occurs
only to the first order. Physically, the higher order terms arise as
the reflection coefficient deviates from its value of -1 at grazing
incidence.

To develop Iu in an asymptotic series, we apply the high-frequency
approximation (6.17) to the exact expression for lu [eq. (6.15)}]. Using
the asymptotic form for the Hankel function allows us to write for Iu:

. e}

L -iy_ o -Y.S o

I = (_E_)J eIW/4 e 1‘jr e T sz(bO + bls + bzsz + ...)ds,
T 0

1
where : -1(22‘1)1Yz

1 1,
by * bys + b252 £ L= (aeis) *(2ios)t s — G (5)
(z°-1)"

and z = (o-is), The expansion about s=0 is valid only for the near-
bottom case (as for the expansion of II) or

Y, <Y, (6.20)

We formally integrate eq. (6.30) term-by-term to express Iu as a series

with gamma functions
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2 -1y M

im/a
e / e
T

T b T(n+3/2) .
n=0 " ¥_(n+2)

SN

o (6.31)

The leading term varies asw;z, or (kor)_2 similar to the result in the
preceding chapter leq. (5.37)] . We recall that the term Y o in the expo-
nential factor may be written
Yo kur, so that Ia term represents a wave associated with the
longitudinal wave in the subbottom. The leading term in eq. (6.31) may
be calculated explicitly as follows:
L -iyra bU

P 0 in/4
I 2 e 7 € (6.32)
YT

The term bq in the expansion is obtained from eq. (6.31) and (6.,15)

2 s
1 -(@"-1)%,
s o4t it (6.33)
b0 a2 1 e > : 6. (0,
(2-13% !
where
-214
Gy (0) = s

2.5 200 2
m(l—a")z(—%-- 1)
2-
Combining eqs. (6.32) and (6.33) gives for %10:

41, )
_ -2ia -i(l-n )zYz ST

I = (] e
a0 2
2 2 y3 2
(1-a )'Yr m(2 Py -1)

(6.34)

[
The corresponding contribution to the Green's function is obtained from

eq. (6.10):
k. H
G = _il.Eil I (6.35)
[s31)] 47 al,
We write the Green's function contribution as follows:
. 2.2
a2 MW@ -2ia -1l (kg-kD) Pz vz )k rd -
‘w0 = AT 3 e (6.36)

Kk rzm(g% - 1)2

“ s
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This branch line integral represents a wave traversing the path shown
. . - -2 ;

in Figure 7. The wave spreads with an r =~ factor. The exponential
factor introduces attenuation for complex ka' To further discuss the

nature of this wave, we consider the no damping case {ku and k, real).

B
Recalling that kO = w/co, we write eq. (6.36) in the following form:

L H(w) 1 2&00 1k0[(cosec){z)+z<) (51nec)r]
G' . = : e . (6.36a)
ol 47 (1w) 2
2 20 2
r m(—-é- - 1)
where A

sinf_ = o= ¢c./c .
c U/ Q

The angle GC denotes the so-called critical angle of incidence. The
path of the wave as shown in Figure 7 1is more apparent upon writing
the exponential in this form. The wave is referred to as the “refrac-
tion arrival' since the wave traverses laterally at the speed Cq along
the surface of the solid bottom. This wave is the first to arrive at

the receiver, since o >¢.; L.e., for a "fast bottom”. Ewing, et al.

0*
[9 ] discussed a similar wave occurring for the two liquid case. The
ﬁm)_l factor in eq. (6.31la) implies that the refraction arrival is
dispersive in the sense that the pulse shape h{t) is distorted at the
receiver. The form of the frequency dependence[(iw)_l] represents an
integration in the time domain, so this wave exhibits the "tail" seen
in two-dimensional wave propagation. We close the discussion of the

refraction arrival by writing eq. (6.36a) in its dimensional form

2.3
. _ ~H(w) o 1 o a) (Z>+Z<)+kar]

- 2
ol 41 2 2k2

k22 (2 - 1
ke

2ik -i[(kg-k
, (6.36b)
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This result agrees with Monda and Nakamura's [15] result [their eq. (17)]
for a liquid over an elastic halfspace. Our result differs in that a
general time dependence for the input pulse is included in the Hi{w)

factor, and damping is implicitly included by taking ka and k, as complex.

f3
The integral IB is developed in a similar manner. We write IB from
eq. (6.16):
ooy W g oy Y 2
_IB = &E)lyr e e s’ e (dy + dys * d,s™ + ...)ds, (6.37)
0
where 2 .5
-(2°-1) Yy,
4 d 2 e 2 25 0 0 s B
o v 9487 dZS + ... “wzﬂf"I?g* (z7-07) “(B-is) “(2Bi-s) Hl(s)
z -

and z = (B-1s). The expansion of the integrand has a finite radius of
convergence, so the result of the formal term-by-term integration of
eq. (6.37) will be another asymptotic expansion in descending powers

of Y- The integration gives us the following series:

PR e Lin/a E 4 L(e3/2)

2.%
IB = &F) e {(6.38)

n
n=0 Yr[n+2)
This result is identical in form to eq. (6.31}. The expconential term

governing the propagation of this wave may be written

‘inB -irkB
e = e , so one sees that this wave is associated

with the shear-wave in the subbottom. We compute the leading term in

eq. (6.38) as follows:

_j_'YrB
Sl
lgg = 2 ° RAA S d, (6.39)
YT
where 2 P
-(8%-1) 7y,

e 2 2.5 L L
dg = —5 T~ (B7-a7) " 27 B1° H,(0)

3%-1y"



and

L L
_ _-smg’-1) 1(@%-af)?
Hy(O) = % 5 250
B [m{B"-1)"+{B -a"}"]
Simplifying the above gives

2
i (n2. 2 -y, (B7-1}" -iy B
I, - 818 -a Jm e ° e T (6.40)

go

1. 1
v 28Im(8%- 1) % (8%-0") ")’

The Green's function contribution is written from eq. (6.10) as follows:

2 Lo
2 g, TY,(B7-1)7 -1y B
G H(w) 8m(f™-a e e
- (6.41)
S N SR SN e SEP SO
kgr™[m(B -1) %+ (R%-a”) )"
The ne damping case for GéO is written (recalling that kB = w/csj:
2 5.
5 3 -YZ(B -1) -lksr
H(w) SCBm{B -0 e e
GSU el = {6.41a)

Gu)rs [m(8%-1) % (8%-%) 112

1
The shear velocity g is less than c,, so the quantity (82-1)‘i is

0°
positive and real. This indicates that exponential attenuation occurs

in the vertical (z) direction due to the first exponential term. The
wive propagates radially with the shear-wave speed g with an 15'_2 depen-
&knce. The (iw)-l factor implies that this contribution to the response
ntegrates the pulse shape in the time domain. We note that the subbottom
s "slow'" with respect to the shear-wave velocity (CB < co). This rules
ait a refraction arrival path similar to Figure 7. Instead, one has a
wave bound to the liquid-solid interface radiating laterally similar to

the Stoneley wave.

We write eq. (6.41) in dimensional form as follows:
2 2.1k
-(z +z ) (k;-k ) ®
Sim(ké—ki) e - B O kgt

T C) e ' (6.41b)

B0~ 4n

3

2 2. 2.5 2,222
T ke[m(ks—ko) +{kB-La) ]
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This result agrees with Honda and Nakamura's equation (21} [15], except
for the more general time dependence. Again, the effect of damping is

implicit in our result due to the complex nature of ka and kB.

D. Summary for Low Incidence Case

We summarize the results for the high-frequency, low incidence
(near-bottom) case by writing the first-order response G' from eqs. (6.10},

(6.11} and (6.26):
K oH (w)
G'{Yr,stw) i P

(2)

x |2m ”0 [erp)cp + 110 + IgO + 180 S N (6.42)
where -ik p
0
1. - -
10 kor
The first term is the Stoneley wave, and the three terms 110, IaO and
I... are leading terms in asymptotic expansions for branch cut integrals.

R0

The net response G is written for the low-incidence case by applying

cq. (6.42) to eqs. (6.1) and {6.2)

G =G+ G[ + G o=
k H{w}
__0 -4 (2)
iy = [2m1 HO (erp)cp + IaG + IB0 t oo ], {(6.43)

where the G_ and GI terms cancel with the I term (to the first order)

1
from eq. (6.29}.
The net response, then, is composed of three types of wave: a

surface wave {Stoneley wave) given by eq. {6.11), a refracted wave

leq. (6.36)}, and another surface-type wave given by eq. (6.41}.
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E. Steepest-Descent Integration

The results of the preceding section [eqs. (6.42) and (6.43)]
are applicable for low incidence angles or near-bottom testing where
the ratio yz/yr is small. The results can be extended to moderate
values of the Yz/Yr ratio 1f higher-order terms are computed for Il’
Ia and IB as indicated in eqs. (6.22), (6.31) and (6.38), Computation
of higher-order terms requires considerable algebraic manipulation where
complicated expressions must be expanded in power series about s=0,
as indicated in eqs. (6.21), (6.30) and (6.37). The expansions have
finite radii of convergence, so all the integrals give divergent series
in descending powers of the large parameter Y, This type of series
is an asymptotic expansion, as has been discussed earlier. Usually,
the first few terms of the series gives accurate results for suffi-
ciently large values of the dominant large parameter. At some point in
the expansion, the terms start getting large, causing the series to
diverge. The series is usually truncated just before the terms start
diverging.

The algebraic difficulty in computing higher-order terms for the
branch line integrals, combined with the uncertainty of convergence of
the series prompts us to evaluate the Green's function G' given in
eq. (6.6) using another approach. We apply the method of steepest
descents [4 ], [20] to evaluate the Green's function. This method en-
tails deforming the original path of integration in the complex plane
in such a way that the integrand is significant for only a small region
in the new path of integration. To apply the method to the integral
given in eq. (6.6}, we first express the Green's function in the complex

plane by substituting z=x+iy for x and denote the deformed contour as T
]
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G'(Yr.yz,w) =

-H{w)k ‘(32‘1)%Yz 2 2%
- . 0f ¢ — (z '“;) ngzl(y 2)zdz, (6.44)
L R CERS I S r
where _
2 2
0,zY) = n(:2-)* (B - 1) - L Pdh) )Ty s (Pl
B B

The path Fs is as yet unspecified, We now apply the high-frequency assump-
tion by using the asymptotic expression for the Hankel function [see
eq. (5.17)1: ‘

1P () = (2Tl T (6.45)

™Y, 2

lypzl > 1.

We may apply eq. (6.45) provided the path Pq does not lie near the origin
where |z| is small. Substituting eq. (6.45) into (6.44) gives

G' (YpaY, @) =

. 2.%
= H(w)ko ( 2 )% eiﬂ/fjr (Zz'ﬁf-z)!i z% e 1[er+(1 i Yz]dz
Y 2 .4 2
2/n T Fs (z7-1) Dl(z ) (6.46)
We introduce the angle of incidence 6 by defining, from Tigure 5
Y
tanf = —F o = ¥£., (6.47)
(z,+z.)
We may write for r and (z>+z<) the following:
T = RI 5in0,
(6.47a)
(z>+z<) = RI cos6 ,

vhere RI is given in eq. {6.3) as

[(z +z ) rZ]%.
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We write eq. (6.46) using these results as follows:

6" (Y., Y, 0) =

_ -H(m)ko : 7 )k (zz_uz)% z% e-ikORI[z sin8+(1—22)}5c058]dz
am Yy ; (z2-1)? Dl(zz]
s (6.48)

The parameter kORI may be written as Yy» @ ratio of the path length of the
reflected wave to the wavelength. We write eq. (6.48) in the form

-H(m)k0
G (¥[,0,0) = ——— (=)

s (6.49)

where
, -
{22_a2)1 % . YIf(Z)

I (z2-1)7 Dl(zz)

Z

and f(z) = i[z sinf + (l-zz)k

cosf].
We assume now that the parameter Y1 is large, or

Y >> 1. (6.50)
This defines a radiation zone in the liquid field. To determine the

steepest-descent path Ps we compute the point of stationarity of f(z),

the factor in the exponential of the integral Is. This is defined by

£'(2) = 0. . (6.51)
2=z,
The point of stationarity 24 is then given by the relation
tand = 0 (6.51a)
(1-22)"

We may also write, from eq. (6.51a):

sinb 20

(6.51b)

1
and cosf (l*zg)ﬁ.



We now expand f(z) about the point z_. as follows:

0
. 1 2
f(z} = f(zo) + f'(zo) ET(Z_ZO) oL, {6.52)
where
f{zo) =i
. -2
and f”(zo) = -i1[cosB] ~.

We write f(z) to the second order as

i (3-20)2
fz) =1 - 3 5 (6.52a)
cos B
Applying this result to eq. (6.49) for IS gives
- . (z—zo)2
s MY] (z -uzJ% zli Y
IS e ” 5 € 2c0528 dz (6.53)

r. (2517 b5

Now, the path T'  is defined near 24 by transforming the exponential

factor (z—z0)2 to a real negative quantity. For the path FS
.i.Y —?
! 2c0528
near z,, We write
{z—zo) = rela, (6.54)

where o must be w/4. A similar path is used by Landeu and Lifschitz [25]

for two liquids. The integral I then becomes approximately

1 1 ® 2( YI )
. 2 2.5 b -T
S {Zo—a ) “0 2c0528
Isu; e > . 3 e dr
(20-1) Dl(zo}
. 2 2.4 Y
-1y, (z--07) z 1
- P 2 (éﬂ)i cos, (6.55)
2
(20—1] Dl{zo) I

where we have used the result [37]
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® 22 .
Jf e dx = (=%
al’-.-

We write the approximate Green's function from cqgs. (6.55) and (6.49)

as follows: 1
-i (zz-uzjﬁ
Hew) 2|0

f
G'(yp,8,0) * == g 7
1 Dl(zoj

, (6.56)

where we have used the relations (6.51b).

The result is given a more useful form by adding the image source

term GI to G'. From egs. (6.2} and (6.3}, we have
H{w) ealkORI Nl(zg}
G, =G, + (' = , (6.57)
1 1 4 RI D (22)
170
where

1.

N, (20) = Dl(zg) ; 2(z3 - o)

Equation (6.57) is the expression for the reflected wave. It has the

spherical spreading factor Ry and propagates along the path shown in

>

c

Figure 5 at the speed c,. The quantity in brackets {Nl/Dl} represents
the plane-wave reflection coefficient for an acoustic wave reflecting
off a solid halfspace. The reflection coefficient is a function of the
angle of incidence, as we recall from eq. (6.51b}:

z, = siné. (6.51b)

The result (6.55) applies for a limited range of the angle of
incidence. Referring to Figure 8 and eq. (6.51b}, we see that the
point of stationarity z, varies with the angle of incidence 8. The

deformed contour TS appears as in Figure 8a for low angles of
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incidence. If the angle of incidence increases beyond a critical
angle Gc, the path FS must loop around the branch cut for z=a, as

shown in Figure 8b. The critical angle ec is given by the relation

2y =@ = sineC (6.58)
for no damping, or
ka Cq
sinf_ = — = — ., (6.58a)
¢ k c
0 o

When damping occurs, the critical angle increases because the point z=q
lies off the real axis. For small damping, the critical angle occurs

when kR . IkI|
o o
k0

sineC = (6.58b}

since the path Ty is inclined 45° from the real axis near Zp- The
result given by eq. (6.56) is valid only for 6 < Bc, where BC is given
by eq. (6.58b).

For angles of incidence greater than GC, one must include the con-
tribution to the integral due to the loop around the branch cut for
z=0.. This loop integral has already beemn calculated to the first order

as G' in eq. (6.36). We recall that this term represents the refraction

1
a0

arrival. The result G& is valid provided the angle of incidence is well

0
away from the critical angle. The loop integral has finite limits, as
can be seen from Figure 8b. If 6 approaches GC, the finite limits must

be taken into account.

We may write for the response G' the following:

. 2 2.4
H(w) 2 V1 (zg-a"}"
G'(Y,0,w) & - Gt o-e ————1 * Gy (6.59)
I 0,(z7)
1Y%
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is given by eq. (6.36), and

whgre G‘O

8§ > 9 .
C

Combining the G' response with the image source term GI gives

-ik R 2
Hiw) e 1k0 ! NI(ZO)
= W o= - th N
G1 CI + G 4am R * LocO (6.60)

2
I Dl[zo)

for 6 > ec. This result is similar to eq. {0.57) for @ < ec, except
that the refracted wave term G&O has been added due to the loop around
the branch cut. |

From eq. (6.1), we see the response in the sum of the direct wave

Gm and G oT

1°

G = Gy + Gy. (6.1)
The net response in the radiation zone for moderate angles of incidence
is composed of the direct wave G_, w»q. (4.18), a reflected wave given
as the right-hand side of eq. (6.56) and the refraction arrival G&O

given by eq. (6.36). The refraction arrival occurs only for

0> 6,

where Gc is given in eq. {6.58b)}.
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VIT. SUMMARY AND CONCLUSTONS

AL Summary

Expressions for the acoustic response in the frequency domain have
been obtained for the n-layer viscoclastic halfspace. The response is
expresscd in integral form. The n = 1 case (a homogeneous solid halfspace)
has been integrated for both finite and infinite depth of the overlying
liguid layer.

A discussion of thc nroblem and a brief survey of related work is
presentced in Chapter I. The nature of the sedimentary subbottom in
shallow water is summarized in Table 1 (Crom fHamilton's data). The
offect of damping processes in the subbottom is discussed, with the
result that the bottom may be considered an elastic solid with super-
imposed damping (Voigt viscoelastic model) .

The anlaysis of the problem starts in Chapter TI. The conservation
laws and an entropy production inequality are presented as the governing
cquations for the media. A discussion of the linecarization process 1is
then piven. The lincarization is bascd on small disturbances (wave
fronts) supcrimposed on a uniform equilibrium or ambient state.

The constitutive equations are devcloped for the viscoelastic
solid undergoing small deformations using an energy approach. The
cquation of motion governing the mechanical field is given as eq. (2.50).
Following this. the cquation of motion for the inviscid fluid is shown
to be a special case of the clastic (undamped) solid. A wave cquation

2.57) is derived using an cquation of state for the pressure. The

acoustic wave propagation speed is shown to be rclated to an isentropic
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elastic modulus and to a thermodynamic derivative,

The vector field equations (2.50) and (2.51) are simplified in
Chapter TIl. First the discussion is limited to the elastic field
equation (no damping). The displacement is decomposed into longitudinal
{curl-less} and transverse (divergence-less) parts. This separates the
equation into two wave operators for cach polarization. A Fourier
transform in time is then introduced which reduces the wave operators to
Helmholtz operators. Then solutions to the homogeneous forms (no
source terms) are developed using a scalar potential function for the
longitudinal field and a vector potential for the fransverse field. The
discussion parallels closely the classical electrodynamic wave
propagation problem [32]. One obtains for cylindrical coordinates
expressions for three polarizations: one longitudinal and two transverse
leq. (3.20)]). Each polarization is expresscd in terms of a scalar
function satisfying a scalar llelmholtz opcrator.

The viscoelastic medium is then discussed. After applying the
Fourier transform, one finds that the field equations reduce to a form
identical to the elastic solid. Each polarization is governed by a
Helmholtz operator [eqs. (3.24) and (3.25)], where the wavenumbers are
complex quantities instead of real due to the presence of damping terms.

llomogeneous forms are used for the governing equations in the
solid. The field excitation occurs in the overlying liquid laycr, so
an inhomogeneous form {with source term) must apply in the inviscid
liquid. The source term in the liquid is taken as a localized,
longitudinal disturbance representing an acoustic transducer. The

disturbance is modeled as a point source with an arbitrary time dependence
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for the strength. The acoustic response to the source is then the
system Green's function, which is governed Ly eq. (3.36).

The stress and displacement fields for the cylindrical coordinate
system are developed in terms of the scalar potential functions for
cach polarization. These expressions are used in the sequel to evaluate
the boundary conditions at each interface hetween media.

In Chapter IV the solution to the boundary-value problem for
arbitrary layers in the subbottom is developed. The response is
cbtained from c¢q. (3.36) using a formal Green's function treatment [50],
f{14] where a Fourier-Bessel transform is applied. The transformation
reduces the governing equation to an ordinary differential cquation in
one dimensien. The Green's function for the unbounded fluid is obtained
by matching boundary conditions at the liquid-solid interface.

The potentials in the solid are written in a form (4.22)
compatible with the Green's function. Roundary conditions arc applied
at an arbitrary solid-solid interface. These boundary conditions
arc then expressed as a recurrence relation (4.30a). Successive
applications of the recurrence relation cenable one to exnress the
potentials in the first solid laver in terms of those in the last
{eq. (1.313]. Then the acoustic ficld is matched to the first solid
layer to obtain eq. (4.33). The acoustic potential iIs obtained as a
Green's function using the recurrence relation. 'The transformed
solution for arbitrary layers is given in cq. (4.37). Special cascs of
eq. (1.38) arc obtained for a single solid layer, an infinite liquid
layer depth and a combinatien of both in cqs. (4.40), (4,41) and (4.42),
respectively.

In Chapter V the acoustic responsce is obtained for the first
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special case: the single solid layer, a halfspace. An integral form 1s
obtaincd Ly taking an inverse Fourier-Pessel transform. The integral
form is manipulated into a form more convenient for contour integration
by introducing a ilankel function in place of the liessel function and
changing the limits of integration. The expression is then written in
nondimensional form in eq. (5.8). After a discussion of the branch and
pole singularities, a contour is selected and the residue theorem is
applied. The Green's function is then expressed in eq. {5.14a) as a sum
of residues and line integrals around each branch cut. The significance
of the residue terms is discussed and cach branch line integral is
written as a definite integral in exact form. The branch line integrals
arc evaluated approximately by considering the high-frequency far-field
casc. Lach integral is cxpressed as an asymptotic series in descending
powers of a large non-dimensional parameter. Two of the branch line
integraisvanish duc to the nature of the integrand.

The final result is given in eq. (5.42), wherc one has three
expressions: a residue scries and two asymptotic series for the Dbranch
line integrals. The residue series has many terms due to the large
number of poles of the integrand. The poles are frequency-dependent ,
making the residue series highly dispersive. The discussion is concluded
by observing that the response is too complicated for further analysis
for the present problem. The large number of residue terms and the
required root search make computations too cumbersome. In addition,
the expression for the responsc is only valid in the far-field due to
assumptions made in the evaluation of the branch line integrals.

In Chapter VI, the case of the semi-infinite liquid over the

homogeneous solid halfspace is developed. The Green's function is



written as the sum of a direct wave, an image source term and a residual
term in eq. (6.4). The direct wave and image source terms are readily
obtained from Sommerfeld's results [46], [49]. We integrate the residual
term using the same procedure as in the preceding chapter. The result is
given in eq. (6.10) as the sum of three branch line integrals and a

residue term., The rcsidue term represents a damped Stoneley wave [8]. In

a discussion assuming small damping, the Stoneley wave is shown to propagate
laterally along the liquid-solid interface with a cylindrical spreading

law, The effect of the wave decays exponentially as the distance from the
interface,

Lxpressions for the branch line integrals are given in eqs. (6.14),
(6.15} and (6.16). These are expressed as asymptotic expansions for the
hipgh-frequency case in eqs. (6.23), (6.31) and (6.38}). These waves are
irterpreted as reflected and refracted waves after computing the first term
in each series. The first term of eq. (6.23) is given in eq. (6.26). A
discussion of this wave shows that it cancels to the first order with the
direct and image source terms, corresponding to cancellation of the direct
wave by the reflected wave at grazing incidence. The hranch-line integral
(6.23), when combined with the image source term, is then interprected as
the reflected wave. The other two branch line integrals are discussed
after computing the first-order terms in each expansion., The first-order
contributions to the Green's functions are given in cxpressions (6.36)
and (¢.41), The first contribution is interpreted as a refracted wave
traveling along a path shown in Figure 7. The second is a modified
refracted wave propagating along thc interface and decaying exponentially

as the distance from the interface.
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These results arc restricted to grazing angles of incidence due to
a converpence condition on the branch line integrals {eq. (6.20)]. An
expression for the response is obtained for moderate anples of incidence
bv applying the mcthod of steepest descent. The original path of
integration along the rcal axis is replaced with the onc shown in
Figure 8. One ohtains two results for the Green's function; eqs. (6.57)
and {6.60), The first is valid for angles of incidence less than a
critical angle defined in eq. (6.58b), and the second for angles larger
than the critical angle,

One sces that the response is the sum of the direct wave, a reflected
wave and a refracted wave which appears only for angles of incidence
greater than the critical. The steepest-descent result is valid for
moderate angles of incidence not too near the critical angle in the
radiation zone or high-frequency regime,

B. Recsults and Conclusions

The primary results of this study arc the expressions for the acoustic
response given in Chapters V and VI for the liquid layer and liquid
halfspace, respectively. The predominant response in the liquid layer
was found to consist of a residue series, each term representing a mode
of propagation, This result was shown to be inconvenient for modeling
acoustic sounding. We then developed in Chapter VI the response for
infinite depth of the liquid layer, a casc of interest when water surface
reflections are not important., After a discussion of the significance of
the high-frequency far-field approximation, the rcsponse was shown to
consist of the sum of several types of waves, each of which was associated

with a singularity in the complex plane. ELach type of wave was interpreted



physically from the algebraic results by analyzing the teading term in
its asymptotic series representation.

Two casecs were considercd: near-bottom grazing incidence and moderate
angles of incidence. In the first case the reflected wave was shown to
cancel with the direct wave (to the first order). Two types of refracted
wave occurred. Onc was associated with the compressional or longitudinal
wave in the subbottom, traveling in a path indicated in Figure 7. The
second one was associated with the shear or transverse wave in the subbottom.
This was found to be a wave propagating along the interface, decaying
exponentially in the vertical direction. Another wave, the Stoneley wave,
occurred due to a pole singularity. This was an interface wave that
spread laterally like a cylindrical wave.

For moderate angles of incidence, the steepest-descent method of
integration was applied. llere the response consisted of the direct wave,

a reflected wave and a refracted wave appearing only for angles of
incidence greater than a critical angle,.

These results provide physical insight into the subbottom identification
problem discussed in Chapter I. The insight is especially useful for
designing acoustic sounding experiments and for analyzing data. The grazing-
incidence results show that one may directly obtain information on the
compressional wave propagation in the subbottom by observing the "first
arrival time" associated with the refracted wave traveling the path
shown in Figure 7. This technique, called "refraction shooting™, is
commonly used in offshore petroleum prospccting. The shear-wave
propagation in the subbottom can be determined indirectly by observing

the damped Stoneley wave. This technique has been used by Hamilton f11].



lis model for the Stoneley wave, described in Reference [2}, does not
systematically take into account the three-dimensional nature of the wave
or the effect of damping. These effects were explicitly included in the
present study, We conclude, then, that near-hottom grazing incidence
testing can yield information directly or indirectly on the wave
propagation {(inciuding damping) in the subbottom,

Oblique incidence sounding can also yicld information on the
subbottom. The feasibility of this approach has been demonstrated by
Breslau [1], as mentioned in Chapter [. The results obtained here show
that more refined information may be obtained through inclusion of damping
and use of a range of incidence angles. (Breslau was concerned with only
normal incidence.)

The results of Chapter VI can then be used to design arrays of
acoustic transducers and for analysis of data. Specifically, computer
studics may be performed using numerical data from tamilton's results
(Table 1). Since consistent damping data is not available, one must infer
the effect from in situ data.

In Chapter IV thc acoustic response was expresscd in integral form
for a subbottom with an arbitrary number of parallel layers. Due to
algebraic complexity, this integral form was cvaluated only for the single-
layer case in the succeeding chapters. The general result, however, is
new and provides a means for investigating sub-layering effects. Two
approaches can be used: direct computer studies in which the integration
is performed numerically, and a combined computer-analytical study in
which the integral form is expressed as a series of residue and branch
line integrals. The sccond approach is a generalization of Chapters V

and VI, The algebraic complexity of the integrand for more than one



layer in the subbottom precludes the dircct calculation of the residue
term and the branch line integrals. llowever, the calculations may be
pertformed on the computer quite readily.

Some insight on the sub-layering problem was obtained by Jardetzsky [106].
lle found that the only branch line integrals contributing to the responsc
werce those for the singularities in the last layer, the halfspace. The
branch singularities in the intermediate layers did not contribute duc
to the form of the integrand. The response for the morc general case
will then consist of two branch line integrals and a residuc series. The
response may be obtained Ly an appropriate root search using numerical
techniques and by computing numerically the two branch line integrals.

The steepest descent method may also be applied to the multi-layer problem
for the infinite water depth case. The integrand is more complex. but
the procedure parallels closely the development in Chapter VI,

In Chapter III the field excitation occurring in the liquid was taken,
after a physical discussion, as a point monopole source. A Green's function
formalism was introduccd conveniently since the acoustic response due to
the point source can be considered to be the system's Green's function.

The formalism was applied systematically to the multi-layer problem in
Shapter 1V. This problem is ideal for application of the Green's
function formalism due to the type of ficld excitation, the shorthand
notation and the systematic nature of the computational procedure. This
study appears to be the first where the Green's function formalism was
applied to multi-layer problems. The geophysics litcraturc (cf.
Keference [5}) develops the response by computing acoustic potentials

separately above and below the source in the liquid. The field excitation



in the liquid is taken into account by adding a source term, the form
of which is obtained from Sommerfeld's [46] result. The Green's
function formalism combines the two expressions for the potentials
above and below the source using reciprocity. In addition, the field
excitation is taken into account by the use of an inhomogenecus form
(point source) for the acoustic field equation.

{. Recommendations

151

Further development of the results presented is required for solving

the subbottom identification problem. The immediate work must combine
numerical or computer studies with experimental results. Some general
conclusions must he arrived at concerning the nature of subbottom
damping. In addition, the effects of sub-layering must be determined,
This study provides the necessary models for interpreting experimental
data obtained to determine these effects.

The following areas of study are recommended:

1. In situ acoustic sounding at grazing angles of incidence
(near-bottom testing) using the results of Chapter VI as a model for
interpretation of test data. Predicted pulse shapes may be obtained
for representative bottom types using Hamilton's results and Fourier
synthesis. Comparison of test data with predicted pulsc shapes may be
made using coring data for the site.

2. Computcr analysis of the effects of sublayering using the
results of Chapter IV, coring data for representative sites and
flamilton's results.

3. Computation of higher-order terms in the cxpansions in

Chapter VI. Also further analysis of behavior of the integral form for
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mathematically pathological cases where singularities lic close
together in complex plane using the approach of Van Der Waerden [56}.
The casc where the angle of incidence approaches the critical angle 1is
of particular interecst.

4. Turther analytical study of thc mechanism of damping for
unconsolidated sediments combined with an experimental program in the
laboratory. The experimental program might be performed in the ultra-
sonic frequency regime to reduce the size of the cxperiment.

Further development of the modeling is highly dependent upon
experimental results, as guidance is needed to determine the direction
of further analysis. More specific recommendations cannot be made
without further insight from carefully designed and exccuted experiments
carried out in the field,

Other factors not considered in this study may be sipnificant.
These include random inhomogenieties in the media, non-parallel and
non-planar layering structure and thermal gradients in the liquid layer.
Analysis of these effccts should be performed if experimental results

indicate that any of these arc important.
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APPENDIEX A

ISOTROPLIC TENSORS

In deriving constitutive relations for media having isotropic
physical properties, it is nccessary to develop expressions for isotropic
tensors of the second and fourth order. For convenience in computation
we restrict the development to Cartesian tensor notation.

Isotropy implies that the quantity in question has propertices
invariant with respect to the orientation of the coordinate system. One
writes the representation for a vector (first order tensor) upon rotation
(change of orientation) as follows:

u! = a, . .u., (A.1)

L

j ij71

where the prime denotes the representation in the rotated frame, and the
aij are the cosines of the angles between the original iEﬂ-axis and the

.th . . . . .
new j—- axis. The inverse transformation of eq. (A.1) 1s

i ijk (A.1a)
Applying eq. (A.la) to (A.1l) gives

'V L
uj = aijaikuk (A.2)

Equation (A.2) implics that
25%k © S,

where &.. is the Kronecker delta. Furthermore, a,.a . = &, . One may
jk ji ki jk

write the coordinates of the rotated frame [from eq. (A.1)] as
X, = 4, X,
3 1)1

We see that

—= = a,,

axX, ij

Bxi

From the inverse transformation, T a
HE |

i3
i }
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We introducc a tensor of the second order W, | by requiring it

to transform according to the following law

' -
“i1 T 3% %k, (A.3)
The condition of istropy for the second-order tensor is:

Wiy (A.4)

Say we write

mij Cﬁij s (A.5)
where ¢ is a scalar.

The transformed form is

uﬁj = céij (A.52)
If wij is isotropic, eq. (A.4) must hold, or
6ij = 5ij (A.0)

from eqs. (A.5). We write, since 6ij is evidently a second-order tensor
]
= .a., = .a, ., = G..
6ij aklaljskl aklakj ij
This result shows eq. (A.6) is satisfied, so the representation
of eq. (A.5) is an isotropic tensor. An example of an isotropic second-

order tensor is the stress tensor for an inviscid fluid (eq. 2.47):

= .n'
95 7 "P'Sy5.

One requires isotropic fourth-order tensors in the constitutive
relations for linear solids having material isotropy [see eqs. (2.25) and
(2.38)]. We have a relation of the form:

0ij = Eijmngmn. (A7)
In the rotated (primed) frame one has

t = E t

op opqr qr. (A.8)

To show that Eijmm is a fourth-order tensor we write



a. . a, a._ a’ (A.9a)
ij ic “jp op
and

g' =a__a ¢! (A.9D)
qr mq nr mn
Substituting eg. (A.9b) into eq. (A.3) fives

g! = a a _ L! € {AL10)
op mq “nr opqr mn

1f one multiplies both sides of cq. (A.10) Dby aioajp onc has, from

eq. (A,9a)

g..=a,_ a, a a ! £ (A1)
ij io “jp "mq “mr opqr MmN
One sees from eqs. (A.11) and (A.7) that
L.. =3, 4a._a a !
ijmn io "jp mgq nr opqr, (A12)

is the transformation for a fourth-order tensor, as can be seen from a
generalization of the transformation of eq. (A.1a). The condition of
material isotropy for the relatioms (A.7) and {A.8) is, from eq. (A12)

= I =

I:"1jmn ijmn 3o ajp amq Tar :épqr (A13)
Fauation (A.13) is satisfied for three products of Kronecker delta
functions:
ij 5mn,
e, % Sin 6jn, (A 11)

ijmn
§. 8

in jm,

.

as can be verified by direct substitution. If one has the following

symmetries:

S S = E. ., =1 .,

rljmn Ljlmn El]nm mniid, (A.15)
the most general isotropic fourth-order tensor can be constructed from a
linear combination of the three factors in cq. (A.14) (Sec Refs. [18]

and [191):
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L., o= A8, 8  + (s, &+ & &Y}, (A.106)
ijmn ij “mn im jn inogm

Lquation (A.16) is the form used for constitutive rclations in eqs. (2.25)
and (2.38). The symmetries in eq. (A.l5) arise due the symmetry of the

stress and strain (or strain-rate) tensors and due to thermodynamic con-

siderations.
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APPENDIX B
THE ROOTS OF THE FREQUENCY EQUATION:
FINITE DEPTH OF LIQUID LAYCR
We wish to find solutions to eq. (5.11), the frequency equa-
tion for the finite liquid laver over the homogeneous viscoelastic
halfspace. Solutions represent poles of the integrand in eq. (5.14),
which in turn are associated with residue terms representing modal

behavior in the acoustic response. We write the frequency equation as

D(z) = 0, (5.11)
where * 31 is the ith solution in the complex (z) plane and from eq. (5.8):
Lo 5 L 2 2L !
0(z%) = m(z"-1)7[22°-8%)° - 4(z%-0") 7 (27 -8%) 2 Jeosh [k ghy (2°-1) 7]

+54(zz-azj%sinh[koho(zz-ljﬁ].

As mentioned in Chapter V, the roots of thec frequency eguation
for the liquid over an elastic solid were investigated by Schermann[42].
His study applies to eq. (5.11) if o and B are taken as positive real
numbers. Viscoelasticity of the Voigt type makes o and £ complex num-
bers appearing in the fourth quadrant. This is evident if one recalls

the definition of o and B

k
a = =
kO
and X
B =2
kg (5.7)

where ka and kB arc given in eqs. (3.24) and (3.25) and kOL is real and
positive.
The damping is relatively small, as mentioned in Chapter 1. This

implies that we may write « and B in the form:



Q
]

o, - ieat
0

and : (B.1)

W™
1]

By - 1ieB’
where a' and B' are real and positive and

g << 1 (B.2)

We may formally apply perturbation theory to the problem, setting

the solution, z, in the form

z =12, - 1ez2’ (2.3

The term 24 corresponds to an undamped solution to equation (5.11),

145

as can be shown by expanding eq.(5.11) about the undamped equation state:

D(Z,U,B) =0 = D(ZO,C‘O’BO) +
(B.4)
oD oD aD

_le{ﬁ_i.zt_r_é_c_tal +'§§B'} PN

205%0 8o
We set each term associated with a given power of € to zero in

(B.4), giving as a result to the first order:

D(zg,05,B4) = 0 (B.5)

and
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1 VI 1

_V‘J‘ o
R L (5.6)

3z 0% Fq

One sees from this recsult that the solution z,, to the undamped
equation is the zeroth order part of the solution for the damped
cquation. The first order part of the solution (z'} is given in
terms of the derivatives of the undamped equation.

Since a first-order solution to eq. (5.11) 1is also a solution
to eq. (B.5) for the undamped case, Schermann's results arce applicable.
we recall that Schermann found a finite number of real roots. From
the discussion in Ewing, et al. [7], the real roots were found to lic

in thc region

A < x <1 (G.7)

for two liquids. The same result can be shown to apply for the solid

bottom if the shear wave velocity is small. We note from Table 1 that

. %< or B. »>» 1
ca Cy LO

We rewrite eq. (5.11) for a real root 2z, = X as follows:
m(xz-l)‘/2 X .2 2 4i . 2 2% 2 .24
s T Il 2(F) -1 ] - 2 (x-an)t (BR-xT)? =
2 2.7 B 4 0 t
(X _an) 0 BO

(B.8)
2,44
-tanh [koho(x -1 1

For B very large, eq. (B.8) reduces to
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- 1,
4._ 2 ~ 1.
mix - - L opamh b (xT-1D0T (8.9)
2 2% 00
(X - 0)
the frequency cquation for two liquids {7]. This can have real solu-
tions, x, only if eq. (B.7) holds. We rewrite cq. (B.9) as follows:
lri(l-xz}l/2 2.h
—5—5—; = - tan [koho(l—x“)2 1 , (B.9a)
(x"-a")*
wherc all the square roets are positive real numbers. We note that
solutions to equation (B.9a) are frequency-dependent due to the thO
factors on the right-hand side. One may graphically determine the
solutions to eq. (B.9a) as was done in reference [7] in Figure 4-4,
The tosult is that N non-trivial real roots appear in the region
given in cq. (B.7), where N is the largest integer satisfying the
inequality
2H + 1 ]
=t = < - 2.
( 5 ymooo< koho(l o) (B.10)
Introducing the wavelength Ag = Zﬂ/k”into eq. (B.10)gives:
2N+ 1 - h 2%
( R LA G I S
4 - Ag

We see that for high frequencies corrcsponding to large values of the
ratio ho/Ao , one has many solutions N.

One sees from the form of eq. (B.8) that the number of poles, N,
is the same for the liquid over the eclastic solid to the first order
for B >> 1. This can be shown formally by cxpanding about the two

liquid case {Bo = 0). The zeroth order solution will be given by
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eq. (B.9a). The effect of the small rigidity shifts each pole slightly
in the comnlex plane.

As a result, we see that solutions to eq. (5.11) for small
dampiﬁg and By small lie close to the rcal axis and slightly in the

fourth quadrant. We write eq. (B.3) in the form

z = Xg - iez' , (B.ll)
where gg < xg < 1
and £ < <1

The number N of roots is given by eq. (B. 10).

These results have been verified for a typical example of marine
sediments. Complex roots of eg. (5.11) were determined numerically
using Hamilton's data for fine sand (sec Table 1). A small amount of
damping was assumed for a and 3. The frequency was taken as 3500 [iz
and the water depth hg was 30 meters. Other paramcters werce:

cp = 1501 m/sec

¢ = 1742 m/sec
o)

cg = 382 m/sec
bg = 1.025 g/cm3
p, = 1.98 g/cm’

‘e number N of roots found was 70, a valuc that agreed with cq.
(1.10). The complex roots were found to lie very close to the real axis,
and the real parts fall in the range given hy cq. (B.7). These results

verified the observations based on the perturbational argument given.
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APPENDIX C
THE ROOTS OF THE FREQUENCY EQUATION:
INFINITE DEPTH OF LIQUIL LAYER
We wish to solve eq. (6.8):
2
Dl(z Y =0
where, from eq. (6.6):

e I T 2 3
R M A S L I e

2
0, 2%y = m’- 0 ES - -
e e

e apply the smail damping assumption to eq. (6.8) and use a perturba-
tion as was done in Appendix B. On applying cqs. (B.1), (B.2) and

(B.3) and expanding D1 about the undamped state, we obtain
D,(z,0,8) = 0= Dl(zo,ao,so) +

. |daD D 2D
_16[*5%_2' * aul ot o+ 5@1‘5' . (C—l]

Zgy,0p 380

Setting each order of ¢ to zero in eq. (C-1 gives

Dl(zo,aO,BO) =0 (C-2)
3D aD
1 o' o+ 1 ey
3 e
z = \ (C-3)
g .
5z ) I R T

As mentioned in Chapter VI, solutions to eq. (C-2) {the undamped cquation)
were ohtained by Strick and Ginsbarg [52]. For marine sediments, where

a <1< 80

A real root xp of eq. (C-2) exists, where



b >BO (C-4)

One may write the complex root Zp to the first order as

zD = xp - igz' | (C-5)

where z' is given by eq. (C-3). The real part Xp is obtained from the

curves in Reference [52].
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